Autotransporter (AT) proteins have been identified in many Gram-negative pathogens and are unique in that their primary sequence is sufficient to direct their transport across the bacterial membrane system. Where characterized they are uniformly associated with virulence. Using conserved AT motifs as a search tool, four putative AT proteins were identified in the Enterohemorrhagic Escherichia coli O157:H7 EDL933 genome. The genes encoding these proteins (z0402/ehaA, z0469/ehaB, z3487/ehaC and z3948/ehaD) were PCR amplified, cloned and expressed in an E. coli K-12 MG1655flu background. Preliminary characterization revealed that ehaA, ehaB and ehaD encode proteins associated with increased biofilm formation. One of these genes (ehaA) resides on a genomic island in E. coli O157:H7 strains EDL933 and Sakai. Over-expression of EhaA in E. coli K-12 demonstrated it is located at the cell surface and resulted in the formation of large cell aggregates, promoted significant biofilm formation and mediated adhesion to primary epithelial cells of the bovine terminal rectum. The expression of ehaA was demonstrated in E. coli EDL933 by RT-PCR. An EhaA-specific antibody revealed the EhaA protein was expressed in 24/50 generic Shiga toxin-producing E. coli (STEC) strains of various serotypes including O157:H7. However, the deletion of ehaA from E. coli EDL933 and a STEC strain from serotype O111:H(-) did not affect biofilm growth. Our results suggest that EhaA may contribute to adhesion, colonization and biofilm formation by E. coli O157:H7 and possibly other STEC serotypes.
The emergence of antibiotic resistance among pathogenic and commensal bacteria has become a serious problem worldwide. The use and overuse of antibiotics in a number of settings are contributing to the development of antibiotic-resistant microorganisms. The class 1 and 2 integrase genes (intI1 and intI2, respectively) were identified in mixed bacterial cultures enriched from bovine feces by growth in buffered peptone water (BPW) followed by integrase-specific PCR. Integrase-positive bacterial colonies from the enrichment cultures were then isolated by using hydrophobic grid membrane filters and integrase-specific gene probes. Bacterial clones isolated by this technique were then confirmed to carry integrons by further testing by PCR and DNA sequencing. Integron-associated antibiotic resistance genes were detected in bacteria such as Escherichia coli, Aeromonas spp., Proteus spp., Morganella morganii, Shewanella spp., and urea-positive Providencia stuartii isolates from bovine fecal samples without the use of selective enrichment media containing antibiotics. Streptomycin and trimethoprim resistance were commonly associated with integrons. The advantages conferred by this methodology are that a wide variety of integron-containing bacteria may be simultaneously cultured in BPW enrichments and culture biases due to antibiotic selection can be avoided. Rapid and efficient identification, isolation, and characterization of antibiotic resistance-associated integrons are possible by this protocol. These methods will facilitate greater understanding of the factors that contribute to the presence and transfer of integron-associated antibiotic resistance genes in bacterial isolates from red meat production animals.
The food-borne pathogen Escherichia coli O157:H7 is commonly exposed to organic acid in processed and preserved foods, allowing adaptation and the development of tolerance to pH levels otherwise lethal. Since little is known about the molecular basis of adaptation of E. coli to organic acids, we studied K-12 MG1655 and O157:H7 Sakai during exposure to acetic, lactic, and hydrochloric acid at pH 5.5. This is the first analysis of the pH-dependent transcriptomic response of stationary-phase E. coli. Thirty-four genes and three intergenic regions were upregulated by both strains during exposure to all acids. This universal acid response included genes involved in oxidative, envelope, and cold stress resistance and iron and manganese uptake, as well as 10 genes of unknown function. Acidulant-and strain-specific responses were also revealed. The acidulant-specific response reflects differences in the modes of microbial inactivation, even between weak organic acids. The two strains exhibited similar responses to lactic and hydrochloric acid, while the response to acetic acid was distinct. Acidulant-dependent differences between the strains involved induction of genes involved in the heat shock response, osmoregulation, inorganic ion and nucleotide transport and metabolism, translation, and energy production. E. coli O157:H7-specific acid-inducible genes were identified, suggesting that the enterohemorrhagic E. coli strain possesses additional molecular mechanisms contributing to acid resistance that are absent in K-12. While E. coli K-12 was most resistant to lactic and hydrochloric acid, O157:H7 may have a greater ability to survive in more complex acidic environments, such as those encountered in the host and during food processing.
An integrated transcriptomic and proteomic analysis was undertaken to determine the physiological response of Escherichia coli O157:H7 Sakai to steady-state conditions relevant to low temperature and water activity conditions experienced during meat carcass chilling in cold air. The response of E. coli during exponential growth at 25°C a w 0.985, 14°C a w 0.985, 25°C a w 0.967, and 14°C a w 0.967 was compared with that of a reference culture (35°C a w 0.993). Gene and protein expression profiles of E. coli were more strongly affected by low water activity (a w 0.967) than by low temperature (14°C). Predefined group enrichment analysis revealed that a universal response of E. coli to all test conditions included activation of the master stress response regulator RpoS and the Rcs phosphorelay system involved in the biosynthesis of the exopolysaccharide colanic acid, as well as down-regulation of elements involved in chemotaxis and motility. However, colanic acid-deficient mutants were shown to achieve comparable growth rates to their wild-type parents under all conditions, indicating that colanic acid is not required for growth. In contrast to the transcriptomic data, the proteomic data revealed that several processes involved in protein synthesis were down-regulated in overall expression at 14°C a w 0.985, 25°C a w 0.967, and 14°C a w 0.967. This result suggests that during growth under these conditions, E. coli, although able to transcribe the required mRNA, may lack the cellular resources required for translation. Elucidating the global adaptive response of E. coli O157:H7 during exposure to chilling and water activity stress has provided a baseline of knowledge of the physiology of this pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.