<p><strong>Abstract:</strong> In this paper, we propose two new provable algorithms for tracking online low-rank approximations of high-order streaming tensors with missing data. The first algorithm, dubbed adaptive Tucker decomposition (ATD), minimizes a weighted recursive least-squares cost function to obtain the tensor factors and the core tensor in an efficient way, thanks to the alternating minimization framework and the randomized sketching technique. Under the Canonical Polyadic (CP) model, the second algorithm called ACP is developed as a variant of ATD when the core tensor is imposed to be identity. Both algorithms are low-complexity tensor trackers that have fast convergence and low memory storage requirements. A unified convergence analysis is presented for ATD and ACP to justify their performance. Experiments indicate that the two proposed algorithms are capable of streaming tensor decomposition with competitive performance with respect to estimation accuracy and runtime on both synthetic and real data.</p> <p><br></p> <p><strong>Code</strong>: https://github.com/thanhtbt/tensor_tracking</p> <p><br></p> <p><strong>Comment</strong>: to appear in Elsevier Patterns</p> <p><br></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.