P38␣ is a protein kinase that regulates the expression of inflammatory cytokines, suggesting a role in the pathogenesis of diseases such as rheumatoid arthritis (RA) or systemic lupus erythematosus. Here, we describe the preclinical pharmacology of pamapimod, a novel p38 mitogen-activated protein kinase inhibitor. Pamapimod inhibited p38␣ and p38 enzymatic activity, with IC 50 values of 0.014 Ϯ 0.002 and 0.48 Ϯ 0.04 M, respectively. There was no activity against p38␦ or p38␥ isoforms. When profiled across 350 kinases, pamapimod bound only to four kinases in addition to p38. Cellular potency was assessed using phosphorylation of heat shock protein-27 and c-Jun as selective readouts for p38 and c-Jun NH 2 -terminal kinase (JNK), respectively. Pamapimod inhibited p38 (IC 50 , 0.06 M), but inhibition of JNK was not detected. Pamapimod also inhibited lipopolysaccharide (LPS)-stimulated tumor necrosis factor (TNF) ␣ production by monocytes, interleukin (IL)-1 production in human whole blood, and spontaneous TNF␣ production by synovial explants from RA patients. LPS-and TNF␣-stimulated production of TNF␣ and IL-6 in rodents also was inhibited by pamapimod. In murine collagen-induced arthritis, pamapimod reduced clinical signs of inflammation and bone loss at 50 mg/kg or greater. In a rat model of hyperalgesia, pamapimod increased tolerance to pressure in a dose-dependent manner, suggesting an important role of p38 in pain associated with inflammation. Finally, an analog of pamapimod that has equivalent potency and selectivity inhibited renal disease in lupus-prone MRL/lpr mice. Our study demonstrates that pamapimod is a potent, selective inhibitor of p38␣ with the ability to inhibit the signs and symptoms of RA and other autoimmune diseases.
Neonatal CD4(+) T cells express less CD154 protein and mRNA than adult CD4(+) T cells after activation by calcium ionophore and phorbol ester, but the mechanism for this reduced expression and its relevance to the primary immune response remain unclear. We compared expression of CD154 protein and mRNA and CD154 gene promoter activity by purified naive (CD45RA(high)CD45RO(low)) neonatal and adult CD4(+) T cells after activation by calcium ionophore (ionomycin) and phorbol myristate acetate (PMA) treatment or by engagement of alphabeta TCR-CD3 complex. Substantial and consistent reductions in expression by neonatal cells were found in all cases and were paralleled by decreased CD154-dependent activation of a B cell line. CD69 expression by neonatal CD4(+) T cells after alphabeta TCR-CD3 engagement was also reduced compared to adult cells, which suggested that limitations in activation-induced signaling by neonatal CD4(+) T cells occurred at a point upstream of where the signaling pathways leading to CD154 and CD69 expression diverge. Decreased CD154 expression by neonatal cells after alphabeta TCR-CD3 engagement was paralleled by a lower free intracellular calcium concentration, a key event for CD154 gene transcription. Reduced CD154 promoter activity by neonatal cells persisted when proximal signaling events were bypassed using ionomycin and PMA, suggesting an additional and more distal mechanism for decreased transcription. In contrast, CD154 mRNA stability was similar in neonatal and adult cells after either ionomycin and PMA stimulation or engagement of the alphabeta TCR-CD3 complex. We conclude that decreased CD154 production by neonatal CD4(+) T cells is due to limitations in both proximal and distal activation events, which together ultimately limit CD154 gene transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.