BackgroundEbola virus disease (EVD) is a highly lethal condition for which no specific treatment has proven efficacy. In September 2014, while the Ebola outbreak was at its peak, the World Health Organization released a short list of drugs suitable for EVD research. Favipiravir, an antiviral developed for the treatment of severe influenza, was one of these. In late 2014, the conditions for starting a randomized Ebola trial were not fulfilled for two reasons. One was the perception that, given the high number of patients presenting simultaneously and the very high mortality rate of the disease, it was ethically unacceptable to allocate patients from within the same family or village to receive or not receive an experimental drug, using a randomization process impossible to understand by very sick patients. The other was that, in the context of rumors and distrust of Ebola treatment centers, using a randomized design at the outset might lead even more patients to refuse to seek care.Therefore, we chose to conduct a multicenter non-randomized trial, in which all patients would receive favipiravir along with standardized care. The objectives of the trial were to test the feasibility and acceptability of an emergency trial in the context of a large Ebola outbreak, and to collect data on the safety and effectiveness of favipiravir in reducing mortality and viral load in patients with EVD. The trial was not aimed at directly informing future guidelines on Ebola treatment but at quickly gathering standardized preliminary data to optimize the design of future studies.Methods and FindingsInclusion criteria were positive Ebola virus reverse transcription PCR (RT-PCR) test, age ≥ 1 y, weight ≥ 10 kg, ability to take oral drugs, and informed consent. All participants received oral favipiravir (day 0: 6,000 mg; day 1 to day 9: 2,400 mg/d). Semi-quantitative Ebola virus RT-PCR (results expressed in “cycle threshold” [Ct]) and biochemistry tests were performed at day 0, day 2, day 4, end of symptoms, day 14, and day 30. Frozen samples were shipped to a reference biosafety level 4 laboratory for RNA viral load measurement using a quantitative reference technique (genome copies/milliliter). Outcomes were mortality, viral load evolution, and adverse events. The analysis was stratified by age and Ct value. A “target value” of mortality was defined a priori for each stratum, to guide the interpretation of interim and final analysis.Between 17 December 2014 and 8 April 2015, 126 patients were included, of whom 111 were analyzed (adults and adolescents, ≥13 y, n = 99; young children, ≤6 y, n = 12). Here we present the results obtained in the 99 adults and adolescents. Of these, 55 had a baseline Ct value ≥ 20 (Group A Ct ≥ 20), and 44 had a baseline Ct value < 20 (Group A Ct < 20). Ct values and RNA viral loads were well correlated, with Ct = 20 corresponding to RNA viral load = 7.7 log10 genome copies/ml. Mortality was 20% (95% CI 11.6%–32.4%) in Group A Ct ≥ 20 and 91% (95% CI 78.8%–91.1%) in Group A Ct < 20. Both mortality 95% CIs i...
The ectodomain of matrix protein 2 (M2e) of influenza A virus is an attractive target for a universal influenza A vaccine: the M2e sequence is highly conserved across influenza virus subtypes, and induced humoral anti-M2e immunity protects against a lethal influenza virus challenge in animal models. Clinical phase I studies with M2e vaccine candidates have been completed. However, the in vivo mechanism of immune protection induced by M2e-carrier vaccination is unclear.
Matrix protein 2 ectodomain (M2e) is considered an attractive component of a broadly protective, universal influenza A vaccine. Here we challenge the canonical view that antibodies against M2e are the prime effectors of protection. Intranasal immunizations of Balb/c mice with CTA1-3M2e-DD-generated M2e-specific memory CD4 T cells that were I-A restricted and critically protected against infection, even in the complete absence of antibodies, as observed in JhD mice. Whereas some M2e-tetramer-specific memory CD4 T cells resided in spleen and lymph nodes, the majority were lung-resident Th17 cells, that rapidly expanded upon a viral challenge infection. Indeed, immunized IL-17A mice were significantly less well protected compared with wild-type mice despite exhibiting comparable antibody levels. Similarly, poor protection was also observed in congenic Balb/B (H-2) mice, which failed to develop M2e-specific CD4 T cells, but exhibited comparable antibody levels. Lung-resident CD69 CD103 M2e-specific memory CD4 T cells were αβ TCR and 50% were Th17 cells that were associated with an early influx of neutrophils after virus challenge. Adoptively transferred M2e memory CD4 T cells were strong helper T cells, which accelerated M2e- but more importantly also hemagglutinin-specific IgG production. Thus, for the first time we demonstrate that M2e-specific memory CD4 T cells are broadly protective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.