Geometrically accurate and anatomically correct 3D models of the human bones are of great importance for medical research and practice in orthopedics and surgery. These geometrical models can be created by the use of techniques which can be based on input geometrical data acquired from volumetric methods of scanning (e.g., Computed Tomography (CT)) or on the 2D images (e.g., X-ray). Geometrical models of human bones created in such way can be applied for education of medical practitioners, preoperative planning, etc. In cases when geometrical data about the human bone is incomplete (e.g., fractures), it may be necessary to create its complete geometrical model. The possible solution for this problem is the application of parametric models. The geometry of these models can be changed and adapted to the specific patient based on the values of parameters acquired from medical images (e.g., X-ray). In this paper, Method of Anatomical Features (MAF) which enables creation of geometrically precise and anatomically accurate geometrical models of the human bones is implemented for the creation of the parametric model of the Human Mandible Coronoid Process (HMCP). The obtained results about geometrical accuracy of the model are quite satisfactory, as it is stated by the medical practitioners and confirmed in the literature.
In the oral and maxillofacial surgery, there is a requirement to provide the best possible treatment for the patient with mandibular fractures. This treatment presumes application of reduction and fixation techniques for proper stabilization of the fracture site. The reduction of the bone fragments and their fixation is much better performed when geometry and morphology of the bone and osteofixation elements (e.g. plates) are properly defined. In this paper, a new healthcare procedure, which enables application of personalized plate implants for the fixation of the mandibular fractures, is presented. Geometrical models of mandible and plate implants, presented in this research, were created by means of the Method of Anatomical Features (MAF), which has been already applied to the creation of accurate geometrical models of various human bones, plates and fixators. By using such geometrically and anatomically accurate models, orthopedic and maxillofacial surgeons can better perform pre-operative tasks of simulating and planning the operation, as well as an intraoperative task of implanting the personalized plate into the patient body.
The greatest challenge in engineering of human mandible implants lies in its customization for each patient individually, by adapting them to the patient's anatomical, morphological and physiological characteristics. This customization maximizes the efficiency of the patient's health recovery process. The application of anatomically shaped and personalized bone endoprosthesis, fixation plate and scaffold models bring great improvement to the clinical practice in maxillofacial surgery. It ensures that implant meets the biomechanical and dentofacial aesthetic requirements and, ultimately, reduces complications during recovery. In order to create such implants, novel procedure based on personalized models of mandible and its parts, and also plates and scaffold implants is presented in this paper. Design procedures for the creation of the personalized models are based on the application of Method of Anatomical Features, which has been already applied for the creation of geometrical models of human bones. This procedure improves pre-surgical planning, enables better execution of surgical intervention, and as a consequence improves patient recovery processes.
The paper reports on the importance of applying the holistic approach in designing a personalized bone scaffold, but also all other kinds of personalized implants. In addition, the paper attempts to point out the important aspects of the design of a PBS against which the quality of a realistic and applicable design solution should be assessed. The holistic approach refers to the adaptation of design features of a bone scaffold to the multilateral specifics related to the particular patient, its surgical case, and curing treatment. To ensure a successful application, five aspects of personalized bone scaffold design should be considered while it is being adapted: anatomical congruency, mechanical conformity, biochemical compatibility and biodegradability, manufacturability, and implantability. To demonstrate the importance of applying a holistic approach in designing a personalized bone scaffold, the paper shows a case where a patient-specific scaffold aimed at the reconstruction of a large missing piece of mandible was designed. The research resulted in a series of recommendations regarding the methods of bone geometry reconstruction and scaffold design. The paper sheds new light on the desired mechanical properties of a personalized bone scaffold while also recommending possible design parameters for optimizing the construction according to these properties. Finally, it recommends a possible procedure of integral production of personalized bone scaffold and bone graft. The presented so-called holistic approach announces a new systematic process of designing a personalized bone scaffold, which, although requiring a comprehensive consideration of complex requirements, is inevitable to make the designed solution applicable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.