The removal of hexavalent chromium (Cr +6) ions from simulated wastewater was investigated by using batch electrocoagulation. The influence of several variables on the removal process was studied such as a type of electrodes, initial pH, initial concentration of Cr +6 ions, electrolysis time, sodium chloride concentration and current density. The experimental results showed that the removal efficiency of Cr +6 ions was more effective when using iron electrode comparing with the aluminium electrodes. The maximum removal of Cr +6 ions was 96.58% at pH 6.0, initial ion concentration 40 mg/L, electrolysis time 15 min, sodium chloride concentration 2 g/L, and the current density 30 mA/cm 2 .
The catalytic activity of faujasite type NaY catalysts prepared from local clay (kaolin) with different Si/Al ratio was studied using cumene cracking as a model for catalytic cracking process in the temperature range of 450-525° C, weight hourly space velocity (WHSV) of 5-20 h1, particle size ≤75μm and atmospheric pressure. The catalytic activity was investigated using experimental laboratory plant scale of fluidized bed reactor.It was found that the cumene conversion increases with increasing temperature and decreasing WHSV. At 525° C and WHSV 5 h-1, the conversion was 42.36 and 35.43 mol% for catalyst with 3.54 Si/Al ratio and Catalyst with 5.75 Si/Al ratio, respectively, while at 450° C and at the same WHSV, the conversion was decreased to 29.15 and 21.86 mol% respectively, and the catalyst of 5.75 Si/Al ratio gave the higher cumene activity than the catalyst with 3.54 Si/Al ratio.
In the present work, the agricultural wastes which are wheat bran and raw okra waste used as adsorbent material for adsorption of cadmium and copper ions from wastewater .The effect of adsorption variable which include initial pH of solution , agitation speed, agitation time, initial concentration of cadmium and copper ions, and amount of adsorbent material were investigated in a batch process in order to obtain the maximum ions removal from wastewater .The results obtained from experimental investigation show that the percentage removal of metal ions increases with increasing pH and agitation speed until a maximize value after that it decreased with increasing pH and agitation speed. Also increases with increasing amount of adsorbent material and agitation time until a maximize value then reach a constant value approximately , and decreasing with increasing metal ions concentration .The maximum removal percent of cadmium and copper ions were 85.8% and 52.7 % respectively which obtained at pH equal 5.0, agitation speed 150 revolution per minute, agitation time 105 minute , metal ion concentration 40mg /L ,and adsorbent amount 1.5gm when using wheat bran as adsorbent material ,while obtained the maximum removal percent of cadmium and copper ions were 81.7% and 47.8 % which obtained at pH equal 6.0, and pH equal 5.0 respectively , agitation speed 150 revolution per minute, agitation time 90 minute ,metal ion concentration 40 mg /L ,and adsorbent amount 1.5gm when using okra waste as adsorbent material. From above result the wheat bran and okra waste was a best adsorbent material for removal cadmium and copper ions from wastewater but wheat bran slightly more effective than okra waste.
In this study, the effects of different loading doses of cerium in the prepared NaY zeolite from Iraqi kaolin were investigated. Al-Duara refinery atmospheric residue fluid catalytic cracking was selected as palpation reaction for testing the catalytic activity of cerium loading NaY zeolite. The insertion of cerium in NaY zeolites has been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with cerium and the weight percent added are 0.35, 0.64, and 1.06 respectively. The effects of cerium loading to zeolite Y in different weight percent on the cracking catalysts were studied by employing a laboratory fluidized bed reactor. The experiments have been performed with weight hourly space velocity (WHSV) range from 6 to 24 h-1, and the temperature range from 450 to 510 oC. The activity of the catalyst with 1.06 wt% cerium has been shown to be much greater than that of the sample parent NaY. Also it was observed that the addition of the cerium causes an increase in the thermal stability of the zeolite.
Atmospheric residue fluid catalytic cracking was selected as a probe reaction to test the catalytic performance of modified NaY zeolites and prepared NaY zeolites. Modified NaY zeolites have been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with lanthanum and the weight percent added are 0.28, 0.53, and 1.02 respectively. The effects of addition of lanthanum to zeolite Y in different weight percent on the cracking catalysts were investigated using an experimental laboratory plant scale of fluidized bed reactor. The experiments have been performed with weight hourly space velocity (WHSV) range of 6 to 24 h-1, and the range of temperature from 450 to 510 oC. The activity of the catalyst with 1.02 wt% lanthanum has been shown to be much greater than that of the sample parent NaY. Also it was observed that the addition of the lanthanum causes an increase in the thermal stability of the zeolite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.