In this study, homology modeling, molecular docking and molecular dynamics simulation were performed to explore structural features and binding mechanism of some inhibitors of chemokine receptor type 5 (CCR5), and to construct a model for designing new CCR5 inhibitors for preventing HIV attachment to the host cell. A homology modeling procedure was employed to construct a 3D model of CCR5. For this procedure, the X-ray crystal structure of bovine rhodopsin (1F88A) at 2.80Å resolution was used as template. After inserting the constructed model into a hydrated lipid bilayer, a 20ns molecular dynamics (MD) simulation was performed on the whole system. After reaching the equilibrium, twenty-four CCR5 inhibitors were docked in the active site of the obtained model. The binding models of the investigated antagonists indicate the mechanism of binding of the studied compounds to the CCR5 obviously. Moreover, 3D pictures of inhibitor-protein complex provided precious data regarding the binding orientation of each antagonist into the active site of this protein. One additional 20 ns MD simulation was performed on the initial structure of the CCR5-ligand 21 complex, resulted from the previous docking calculations, embedded in a hydrated POPE bilayer to explore the effects of the presence of lipid bilayer in the vicinity of CCR5-ligand complex. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
New Delhi metallo-β-lactamase variants and different types of metallo-β-lactamases have attracted enormous consideration for hydrolyzing almost all β-lactam antibiotics, which leads to multi drug resistance bacteria. Metallo-β-lactamases genes have disseminated in hospitals and all parts of the world and became a public health concern. There is no inhibitor for New Delhi metallo-β-lactamase-1 and other metallo-β-lactamases classes, so metallo-β-lactamases inhibitor drugs became an urgent need. In this study, multi-steps virtual screening was done over the NPASS database with 35,032 natural compounds. At first Captopril was extracted from 4EXS PDB code and use as a template for the first structural screening and 500 compounds obtained as hit compounds by molecular docking. Then the best ligand, i.e. NPC120633 was used as templet and 800 similar compounds were obtained. As a final point, ten compounds i.e. NPC171932, NPC100251, NPC18185, NPC98583, NPC112380, NPC471403, NPC471404, NPC472454, NPC473010 and NPC300657 had proper docking scores, and a 50 ns molecular dynamics simulation was performed for calculation binding free energy of each compound with New Delhi metallo-β-lactamase. Protein sequence alignment, 3D conformational alignment, pharmacophore modeling on all New Delhi metallo-β-lactamase variants and all types of metallo-β-lactamases were done. Quantum chemical perspective based on the fragment molecular orbital (FMO) method was performed to discover conserved and crucial residues in the catalytic activity of metallo-β-lactamases. These residues had similar 3D coordinates of spatial location in the 3D conformational alignment. So it is posibble that all types of metallo-β-lactamases can inhibit by these ten compounds. Therefore, these compounds were proper to mostly inhibit all metallo-β-lactamases in experimental studies.
Thrombolytic drugs activate plasminogen which creates a cleaved form called plasmin, a proteolytic enzyme that breaks the crosslinks between fibrin molecules. The crosslinks create blood clots, so reteplase dissolves blood clots. Tissue plasminogen activator (tPA) is a well-known thrombolytic drug and is fibrin specific. Reteplase is a modified nonglycosylated recombinant form of tPA used to dissolve intracoronary emboli, lysis of acute pulmonary emboli, and handling of myocardial infarction. This protein contains kringle-2 and serine protease domains. The lack of glycosylation means that a prokaryotic system can be used to express reteplase. Therefore, the production of reteplase is more affordable than that of tPA. Different methods have been proposed to improve the production of reteplase. This article reviews the structure and function of reteplase as well as the methods used to produce it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.