Lipids play crucial roles in many aspects of glial cell biology, affecting processes ranging from myelin membrane biosynthesis to axo-glial interactions. In order to study the role of lipid metabolism in myelinating glial cells, we specifically deleted in Schwann cells the Lpin1 gene, which encodes the Mg 2+ -dependent phosphatidate phosphatase (PAP1) enzyme necessary for normal triacylglycerol biosynthesis. The affected animals developed pronounced peripheral neuropathy characterized by myelin degradation, Schwann cell dedifferentiation and proliferation, and a reduction in nerve conduction velocity. The observed demyelination is mediated by endoneurial accumulation of the substrate of the PAP1 enzyme, phosphatidic acid (PA). In addition, we show that PA is a potent activator of the MEK-Erk pathway in Schwann cells, and that this activation is required for PA-induced demyelination. Our results therefore reveal a surprising role for PA in Schwann cell fate determination and provide evidence of a direct link between diseases affecting lipid metabolism and abnormal Schwann cell function.[Keywords: Schwann cells; myelin; peripheral neuropathy; lipid metabolism; phosphatidic acid] Supplemental material is available at http://www.genesdev.org.
lipid metabolism ͉ neuron-glia interactions ͉ neuropathy ͉ X-ray diffraction T he rapid saltatory conduction of neuronal action potentials is crucially dependent on the insulating myelin membrane, an organelle synthesized by Schwann cells in the PNS, and by oligodendrocytes in the CNS (1). The electrical insulating property of the myelin membrane is provided by its high and characteristic lipid content with high levels of cholesterol, galactosphingolipids, and saturated long-chain fatty acids (1). Accordingly, metabolic disorders of cholesterol [e.g., Smith-Lemli-Opitz-syndrome and Tangier disease (2, 3)], galactosphingolipids (4, 5), or of fatty acid metabolism [Refsum's disease and diabetes mellitus (2)] often produce myelin defects.With the Schwann cell membrane surface area expanding a spectacular 6,500-fold during myelination (6), it is obvious that production of myelin membrane requires a large amount and diversity of myelin proteins and lipids. Myelination of peripheral nerves is a highly dynamic process with an acute phase that peaks in the second postnatal week in the mouse and a phase of steady-state maintenance in adult nerves (7). While it has been suggested that many of the myelin lipids are synthesized in the nerve itself, as was demonstrated for cholesterol (8, 9), the factors regulating their synthesis in myelinating Schwann cells are largely unknown. We recently profiled transcription in the peripheral nerve during myelination and found that sterol regulatory elementbinding proteins (SREBPs) are highly expressed in myelinating Schwann cells (10)(11)(12). SREBPs, consisting of SREBP-1a, SREBP1c, and SREBP-2, belong to the family of basic helix-loop-helixleucine zipper (bHLH-Zip) transcription factors that regulate lipid metabolism. SREBP-1c and SREBP-2 preferentially govern the transcriptional activation of genes involved in fatty acid and cholesterol metabolism, respectively, whereas SREBP-1a activates both pathways (13). SREBP transcription factors crucially rely on post-translational activation involving the sterol sensor SCAP. When sterol levels are low, SCAP escorts the SREBPs from the ER to the Golgi, where they are activated by processing through the membrane-associated proteases, S1P and S2P. The resulting mature and transcriptionally active forms of the SREBPs translocate to the nucleus where they bind genes containing sterol regulatory elements (13,14).Here, we determined the role of SCAP in myelination by its conditional ablation in Schwann cells. We found that deletion of SCAP seriously affected the dynamics of myelin membrane synthesis and caused neuropathy. However, these phenotypes improved with aging; SCAP mutant Schwann cells were able to slowly synthesize myelin, in an external lipid-dependent fashion, resulting in myelin membrane defects that are associated with abnormal lipid composition. Our data demonstrated the crucial role of SCAPmediated control of cholesterol and lipid metabolism necessary for production of a proper myelin membrane by Schwann cells.
Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor involved in diverse biological processes including adipocyte differentiation, glucose homeostasis, and inflammatory responses. Analyses of PPARγ knockout animals have been so far preempted by the early embryonic death of PPARγ-/- embryos as a consequence of the severe alteration of their placental vasculature. Using Sox2Cre/PPARγL2/L2 mice, we obtained fully viable PPARγ-null mice through specific and total epiblastic gene deletion, thereby demonstrating that the placental defect is the unique cause of PPARγ-/- embryonic lethality. The vasculature defects observed in PPARγ-/- placentas at embryonic d 9.5 correlated with an unsettled balance of pro- and antiangiogenic factors as demonstrated by increased levels of proliferin (Prl2c2, PLF) and decreased levels of proliferin-related protein (Prl7d1, PRP), respectively. To analyze the role of PPARγ in the later stage of placental development, when its expression peaks, we treated pregnant wild-type mice with the PPARγ agonist rosiglitazone. This treatment resulted in a disorganization of the placental layers and an altered placental microvasculature, accompanied by the decreased expression of proangiogenic genes such as Prl2c2, vascular endothelial growth factor, and Pecam1. Together our data demonstrate that PPARγ plays a pivotal role in controlling placental vascular proliferation and contributes to its termination in late pregnancy.
Lipin-1 regulates lipid metabolism via its function as an enzyme in the triglyceride synthesis pathway and as a transcriptional co-regulatory protein and is highly up-regulated in alcoholic fatty liver disease. In the present study, using a liver specific lipin-1-deficient (lipin-1LKO) mouse model, we aimed to investigate the functional role of lipin-1 in the development of alcoholic steatohepatitis and explore the underlying mechanisms. Alcoholic liver injury was achieved by pair feeding wild-type (WT) and lipin-1LKO mice with modified Lieber-DeCarli ethanol-containing low fat diets for 4-wks. Surprisingly, chronically ethanol-fed lipin-1LKO mice showed markedly greater hepatic triglyceride and cholesterol accumulation, and augmented elevation of serum liver enzymes accompanied by increased hepatic pro-inflammatory cytokine expression. Our studies further revealed that hepatic removal of lipin-1 in mice augmented ethanol-induced impairment of hepatic fatty acid oxidation and lipoprotein production likely via deactivation of PGC-1α, a prominent transcriptional regulator of lipid metabolism. Our findings demonstrate that liver-specific lipin-1 deficiency in mice exacerbates the development and progression of experimental alcohol-induced steatohepatitis. Pharmacological or nutritional modulation of hepatic lipin-1 may be beneficial for the prevention or treatment of human alcoholic fatty liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.