The AffecMove challenge organised in the context of the H2020 EnTimeMent project offers three tasks of movement classification in realistic settings and use-cases. Our team, from the EuroMov DHM laboratory participated in Task 1, for protective behaviour (against pain) detection from motion capture data and EMG, in patients suffering from pain-inducing muskuloskeletal disorders. We implemented two simple baseline systems, one LSTM system with pre-training (NTU-60) and a Transformer. We also adapted PA-ResGCN a Graph Convolutional Network for skeleton-based action classification showing state-of-the-art (SOTA) performance to protective behaviour detection, augmented with strategies to handle class-imbalance. For PA-ResGCN-N51 we explored naïve fusion strategies with an EMG-only convolutional neural network that didn't improve the overall performance. Unsurprisingly, the best performing system was PA-ResGCN-N51 (w/o EMG) with a F1 score of 53.36% on the test set for the minority class (MCC 0.4247). The Transformer baseline (MoCap + EMG) came second at 41.05% F1 test performance (MCC 0.3523) and the LSTM baseline third at 31.16% F1 (MCC 0.1763). On the validation set the LSTM showed performance comparable to PA-ResGCN, we hypothesize that the LSTM over-fitted on the validation set that wasn't very representative of the train/test distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.