1,2,5-Chalcogenadiazoles fused with electron-withdrawing heterocycles have been actively investigated for the preparation of organic photovoltaic materials. [1,2,5]Oxadiazolo[3,4-d]pyridazines are much less studied than other chalcogenadiazolopyridazines due to their low availability. In this communication, we report our study showing that 5,6-dihydro-[1,2,5]oxadiazolo[3,4-d]pyridazine-4,7-dione, a key precursor for the synthesis of 4,7-dihalo-[1,2,5]oxadiazolo[3,4-d]pyridazines, is formed via the cyclization of 1,2,5-oxadiazole-3,4-dicarbohydrazide in hydrochloric acid. The structure of the newly synthesized compound was established by means of elemental analysis; high-resolution mass spectrometry; 1H and 13C NMR; IR spectroscopy, and mass spectrometry.
New donor-acceptor-donor (D-A-D)-type structures are widely used to design effective organic light-emitting diodes (OLEDs). In this communication, 4,7-bis(1,2,3,4,4a,9a-hexahydro-9H-carbazol-9-yl)-[1,2,5]oxadiazolo[3,4-d]pyridazine was obtained in a 65% yield by the treatment of 4,7-dichloro[1,2,5]oxadiazolo[3,4-d]pyridazine 1-oxide with 2,3,4,4a,9,9a-hexahydro-1H-carbazole. The structure of the newly synthesized compounds was established by means of an elemental analysis, 1H, 13C NMR, IR and UV spectroscopy, and HRMS and LR mass-spectrometry.
Electron-withdrawing heterocyclic units are found in most organic optoelectronic materials. Benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) is an interesting new heterocyclic system, the chemical properties of which are much less studied than other fused thiadiazoles. Cyano derivatives of electron-accepting heterocycles are known as potential components of photoluminescent materials. In this communication, benzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole)-4-carbonitrile was successfully obtained via the cyanation of 4-bromobenzo[1,2-d:4,5-d′]bis([1,2,3]thiadiazole) with copper(I) cyanide in DMF. The structure of the newly synthesized compound was established by means of elemental analysis, high-resolution mass spectrometry, 1H and 13C NMR, and IR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.