There exists a worldwide shortage of donor livers available for orthotropic liver transplantation and hepatocyte transplantation therapies. In addition to their therapeutic potential, primary human hepatocytes facilitate the study of molecular and genetic aspects of human hepatic disease and development and provide a platform for drug toxicity screens and identification of novel pharmaceuticals with potential to treat a wide array of metabolic diseases. The demand for human hepatocytes, therefore, heavily outweighs their availability. As an alternative to using donor livers as a source of primary hepatocytes, we explored the possibility of generating patient-specific human hepatocytes from induced pluripotent stem (iPS) cells. Conclusion: We demonstrate that mouse iPS cells retain full potential for fetal liver development and describe a procedure that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells that display key liver functions and can integrate into the hepatic parenchyma in vivo. (HEPATOLOGY 2010;51:297-305.)
Embryonic development of the liver has been studied intensely, yielding insights that impact diverse areas of developmental and cell biology. Understanding the fundamental mechanisms that control hepatogenesis has also laid the basis for the rational differentiation of stem cells into cells that display many hepatic functions. Here, we review the basic molecular mechanisms that control the formation of the liver as an organ.
SUMMARYThe availability of pluripotent stem cells offers the possibility of using such cells to model hepatic disease and development. With this in mind, we previously established a protocol that facilitates the differentiation of both human embryonic stem cells and induced pluripotent stem cells into cells that share many characteristics with hepatocytes. The use of highly defined culture conditions and the avoidance of feeder cells or embryoid bodies allowed synchronous and reproducible differentiation to occur. The differentiation towards a hepatocyte-like fate appeared to recapitulate many of the developmental stages normally associated with the formation of hepatocytes in vivo. In the current study, we addressed the feasibility of using human pluripotent stem cells to probe the molecular mechanisms underlying human hepatocyte differentiation. We demonstrate (1) that human embryonic stem cells express a number of mRNAs that characterize each stage in the differentiation process, (2) that gene expression can be efficiently depleted throughout the differentiation time course using shRNAs expressed from lentiviruses and (3) that the nuclear hormone receptor HNF4A is essential for specification of human hepatic progenitor cells by establishing the expression of the network of transcription factors that controls the onset of hepatocyte cell fate.
Matrix metalloproteinase (MMP)-3 is a protease involved in cancer progression and tissue remodeling. Using immunofluorescence and immunoelectron microscopy, we identified nuclear localization of MMP-3 in several cultured cell types and in human liver tissue sections. Western blot analysis of nuclear extracts revealed two immunoreactive forms of MMP-3 at 35 and 45 kd, with the 35-kd form exhibiting caseinolytic activity. By transient transfection, we expressed active MMP-3 fused to the enhanced green fluorescent protein (EGFP/aMMP-3) in Chinese hamster ovary cells. We showed that EGFP/aMMP-3 translocates into the nucleus. A functional nuclear localization signal was demonstrated by the loss of nuclear translocation after site-directed mutagenesis of a putative nuclear localization signal and by the ability of the MMP-3 nuclear localization signal to drive a heterologous protein into the nucleus. Finally, expression by Chinese hamster ovary cells of EGFP/aMMP-3 induced a twofold increase of apoptosis rate, compared with EGFP/pro-MMP-3, which does not translocate to the nucleus. Increased apoptosis was abolished by site-directed mutagenesis of the catalytic site of MMP-3 or by using the MMP inhibitor GM6001. This study elucidates for the first time the mechanisms of nuclear localization of a MMP and shows that nuclear MMP-3 can induce apoptosis via its catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.