Plasmodium falciparum and Schistosoma haematobium are co-endemic parasitic diseases with worldwide distribution. Evidence suggests interactions occur between helminthic and malaria infections, although it is unclear whether this effect is beneficial or harmful to the host. Malian children 4-14 years of age with asymptomatic S. haematobium infection (SP) (n = 338) were prospectively matched by age, sex, and residence to children without schistosomiasis (SN) (n = 338) who were cleared of occult intestinal parasites, and followed-up for one malaria transmission season (25 weeks). The time to the first clinical malaria infection, incidence of malaria episodes, and parasitemia were recorded. Age associated protection from malaria in children with schistosomiasis was observed. SP children (4-8 years of age) compared with SN children demonstrated delayed time to first clinical malaria infection (74 versus 59 days; P = 0.04), fewer numbers of malaria episodes (1.55 versus 1.81 infections; P = 0.03) and lower geometric mean parasite densities (6,359 versus 9,874 asexual forms/mm(3); P = 0.07) at first infection. No association between schistosomiasis and P. falciparum malaria was observed in children 9-14 years of age. We conclude that underlying schistosomiasis is associated with protection against clinical falciparum malaria in an age-dependent manner.
BackgroundMalaria vaccines based on the 19-kDa region of merozoite surface protein 1 (MSP-119) derived from the 3D7 strain of Plasmodium falciparum are being tested in clinical trials in Africa. Knowledge of the distribution and natural dynamics of vaccine antigen polymorphisms in populations in which malaria vaccines will be tested will guide vaccine design and permit distinction between natural fluctuations in genetic diversity and vaccine-induced selection.Methods and FindingsUsing pyrosequencing, six single-nucleotide polymorphisms in the nucleotide sequence encoding MSP-119 were genotyped from 1,363 malaria infections experienced by 100 children who participated in a prospective cohort study in Mali from 1999 to 2001. The frequencies of 14 MSP-119 haplotypes were compared over the course of the malaria transmission season for all three years, in three age groups, and in consecutive infections within individuals. While the frequency of individual MSP-119 haplotypes fluctuated, haplotypes corresponding to FVO and FUP strains of P. falciparum (MSP-119 haplotypes QKSNGL and EKSNGL, respectively) were most prevalent during three consecutive years and in all age groups with overall prevalences of 46% (95% confidence interval [CI] 44%–49%) and 36% (95% CI 34%–39%), respectively. The 3D7 haplotype had a lower overall prevalence of 16% (95% CI 14%–18%). Multiplicity of infection based on MSP-119 was higher at the beginning of the transmission season and in the oldest individuals (aged ≥11 y). Three MSP-119 haplotypes had a reduced frequency in symptomatic infections compared to asymptomatic infections. Analyses of the dynamics of MSP-119 polymorphisms in consecutive infections implicate three polymorphisms (at positions 1691, 1700, and 1701) as being particularly important in determining allele specificity of anti-MSP-119 immunity.ConclusionsParasites with MSP-119 haplotypes different from that of the leading vaccine strain were consistently the most prevalent at a vaccine trial site. If immunity elicited by an MSP-1-based vaccine is allele-specific, a vaccine based on either the FVO or FUP strain might have better initial efficacy at this site. This study, to our knowledge the largest of its kind to date, provides molecular information needed to interpret population responses to MSP-1-based vaccines and suggests that certain MSP-119 polymorphisms may be relevant to cross-protective immunity.
In this setting of low antifolate resistance, TS was highly effective in preventing falciparum malaria infection and disease and did not appear to select for SP-resistant parasites.
BackgroundThe objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria.Methodology/Principal FindingsA phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18–55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 µg/AS02A 0.25 mL or FMP2.1 50 µg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively.Conclusion/SignificanceThe FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site.Trial RegistrationClinicalTrials.gov NCT00308061
This study presents one of the higher number of HIV and non-HIV patients presenting with PCP in a single center. Pneumocystosis is now a crucial health challenge for patients receiving immunosuppressive therapy, with a high mortality rate. This study highlights the need for international guidelines for prophylaxis of PCP in non-HIV patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.