Crackling noise arises when a system responds to changing external conditions through discrete, impulsive events spanning a broad range of sizes. A wide variety of physical systems exhibiting crackling noise have been studied, from earthquakes on faults to paper crumpling. Because these systems exhibit regular behaviour over a huge range of sizes, their behaviour is likely to be independent of microscopic and macroscopic details, and progress can be made by the use of simple models. The fact that these models and real systems can share the same behaviour on many scales is called universality. We illustrate these ideas by using results for our model of crackling noise in magnets, explaining the use of the renormalization group and scaling collapses, and we highlight some continuing challenges in this still-evolving field.
We use the zero-temperature random-field Ising model to study hysteretic behavior at first-order phase transitions. Sweeping the external field through zero, the model exhibits hysteresis, the return-point memory effect, and avalanche fluctuations.There is a critical value of disorder at which a jump in the magnetization (corresponding to an infinite avalanche) first occurs. We study the universal behavior at this critical point using mean-field theory, and also present preliminary results of numerical simulations in three dimensions.
The tasks of neural computation are remarkably diverse. To function optimally, neuronal networks have been hypothesized to operate near a nonequilibrium critical point. However, experimental evidence for critical dynamics has been inconclusive. Here, we show that the dynamics of cultured cortical networks are critical. We analyze neuronal network data collected at the individual neuron level using the framework of nonequilibrium phase transitions. Among the most striking predictions confirmed is that the mean temporal profiles of avalanches of widely varying durations are quantitatively described by a single universal scaling function. We also show that the data have three additional features predicted by critical phenomena: approximate power law distributions of avalanche sizes and durations, samples in subcritical and supercritical phases, and scaling laws between anomalous exponents.
A basic micromechanical model for deformation of solids with only one tuning parameter (weakening epsilon) is introduced. The model can reproduce observed stress-strain curves, acoustic emissions and related power spectra, event statistics, and geometrical properties of slip, with a continuous phase transition from brittle to ductile behavior. Exact universal predictions are extracted using mean field theory and renormalization group tools. The results agree with recent experimental observations and simulations of related models for dislocation dynamics, material damage, and earthquake statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.