Industrial demand response can play an important part in balancing the intermittent production from a growing share of renewable energies in electricity markets. This paper analyses the role of aggregators-intermediaries between participants and the electricity market-in facilitating industrial demand response. Based on the results from semi-structured interviews with German demand response aggregators, as well as a wider stakeholder online survey, we examine the role of aggregators in overcoming barriers to industrial demand response. We find that a central role for aggregators is to raise awareness for the potentials of demand response, as well as to support implementation by engaging key actors in industrial companies. Moreover, we develop a taxonomy that helps analyse how the different functional roles of aggregators create economic value. We find that there is considerable heterogeneity in the kind of services that aggregators offer, many of which do create significant economic value. However, some of the functional roles that aggregators currently fill may become obsolete once market barriers to demand response are reduced or knowledge on demand response becomes more diffused.
Industrial demand response can play an important part in balancing the intermittent production from a growing share of renewable energies in electricity markets. This paper analyses the role of aggregators-intermediaries between participants and the electricity market-in facilitating industrial demand response. Based on the results from semi-structured interviews with German demand response aggregators, as well as a wider stakeholder online survey, we examine the role of aggregators in overcoming barriers to industrial demand response. We find that a central role for aggregators is to raise awareness for the potentials of demand response, as well as to support implementation by engaging key actors in industrial companies. Moreover, we develop a taxonomy that helps analyse how the different functional roles of aggregators create economic value. We find that there is considerable heterogeneity in the kind of services that aggregators offer, many of which do create significant economic value. However, some of the functional roles that aggregators currently fill may become obsolete once market barriers to demand response are reduced or knowledge on demand response becomes more diffused.
In order to ensure security of supply in a future energy system with a high share of volatile electricity generation, flexibility technologies are needed. Industrial demand-side management ranks as one of the most efficient flexibility options. This paper analyses the effect of the integration of industrial demand-side management through the flexibilisation of aluminium electrolysis and other flexibilities of the electricity system and adjacent sectors. The additional flexibility options include electricity storage, heat storage in district heating networks, controlled charging of electric vehicles, and buffer storage in hydrogen electrolysis. The utilisation of the flexibilities is modelled in different settings with an increasing share of renewable energies, applying a dispatch model. This paper compares which contributions the different flexibilities can make to emission reduction, avoidance of curtailment, and reduction of fuel and CO2 costs, and which circumstances contribute to a decrease or increase of overall emissions with additional flexibilities. The analysis stresses the rising importance of flexibilities in an energy system based on increasing shares of renewable electricity generation, and shows that flexibilities are generally suited to reduce carbon emissions. It is presented that the relative contribution towards the reduction of curtailment and costs of flexibilisation of aluminium electrolysis are high, whereby the absolute effect is small compared to the other options due to the limited number of available processes.
ZusammenfassungHintergrund. Die Bezugsquellen und Transportwege von fossilem Erdgas werden sich in den kommenden beiden Dekaden diversifizieren. Veränderungen der Lieferstruktur, verbunden mit weiteren Transportentfernungen und Neubau von Pipelines, sowie der verstärkte Einsatz von verflüssigtem Erdgas (LNG -Liquefied Natural Gas) sind zu erwarten. Entsprechend werden sich auch die vorgelagerten Prozessketten und die damit verknüpften THG-Emissionen verändern. Im Sinne einer korrekten und ganzheitlichen Bilanzierung der Lebenszyklusemissionen und weitgehender Treibhausgasminderungsziele, sind die vorgelagerten Emissionen eine nicht zu vernachlässigende Größe. Gleichzeitig wird Biomethan als Beimischung zum fossilen Erdgas an Bedeutung gewinnen. Obwohl seine Verbrennung als klimaneutral gewertet wird, sind die Prozesse zur Herstellung von Biomethan mit Emissionen verbunden. Die Treibhausgas-Emissionen (THG) der Vorketten von in der EU eingesetzten Energieträgern werden in der neuen EUKraftstoffqualitätsrichtlinie reguliert (vom Dez. 2008 Integrated GHG assessment of the process chains of natural gas and industrialized bio methane in Germany Abstract Background. The use of natural gas has increased in the last years. In the future, its import supply and transport structure will diversify (longer distances; higher share of LNG (liquefied natural gas); new pipelines). Thus the process chain and GHG emissions of the production, processing, transport and distribution might change. Simultaneously, the injection of bio methane into the natural gas grid is becoming more important. Although its combustion is regarded as climate neutral, during the production processes of bio methane GHG emissions are caused. The GHG emissions occurring during the process chain of energy fuels are relevant for the discussion on climate policy and decision making processes. They are becoming even more important, considering the new Fuel Quality Directive of the EU (Dec. 08), which aims at controlling emissions of the fuel process chains. Aim. In the context of the aspects outlined above the aim is to determine the future development of gas supply for Germany and the resulting changes in GHG emissions of the whole process chain of natural gas and bio methane. With the help of two gas consumption scenarios and a LCA of bio methane the amount of future emissions and emission paths until 2030 can be assessed and used to guide decision processes in energy policy. Results and Discussion. The process chain of bio methane and its future technical development are outlined and the related emissions calculated. The analysis is based on an accompanying research study on the injection of bio methane to the German gas grid. Two types of biogas plants have been considered whereof the "optimised technology" is assumed to dominate the future market. This is the one which widely exploits the potential of process optimisation of the current "state of the art" plant. The specific GHG emissions of the process chain can thus be nearly halved from currently 27.8 ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.