Generalized peeling skin disease is an autosomal-recessive ichthyosiform erythroderma characterized by lifelong patchy peeling of the skin. After genome-wide linkage analysis, we have identified a homozygous nonsense mutation in CDSN in a large consanguineous family with generalized peeling skin, pruritus, and food allergies, which leads to a complete loss of corneodesmosin. In contrast to hypotrichosis simplex, which can be associated with specific dominant CDSN mutations, peeling skin disease is characterized by a complete loss of CDSN expression. The skin phenotype is consistent with a recent murine Cdsn knockout model. Using three-dimensional human skin models, we demonstrate that lack of corneodesmosin causes an epidermal barrier defect supposed to account for the predisposition to atopic diseases, and we confirm the role of corneodesmosin as a decisive epidermal adhesion molecule. Therefore, peeling skin disease will represent a new model disorder for atopic diseases, similarly to Netherton syndrome and ichthyosis vulgaris in the recent past.
The zinc endopeptidase meprin (EC 3.4.24.18) is expressed in brush border membranes of intestine and kidney tubules, intestinal leukocytes, and certain cancer cells, suggesting a role in epithelial differentiation and cell migration. Here we show by RT-PCR and immunoblotting that meprin is also expressed in human skin. As visualized by immunohistochemistry, the two meprin subunits are localized in separate cell layers of the human epidermis. Meprin alpha is expressed in the stratum basale, whereas meprin beta is found in cells of the stratum granulosum just beneath the stratum corneum. In hyperproliferative epidermis such as in psoriasis vulgaris, meprin alpha showed a marked shift of expression from the basal to the uppermost layers of the epidermis. The expression patterns suggest distinct functions for the two subunits in skin. This assumption is supported by diverse effects of recombinant meprin alpha and beta on human adult low-calcium high-temperature keratinocytes. Here, beta induced a dramatic change in cell morphology and reduced the cell number, indicating a function in terminal differentiation, whereas meprin alpha did not affect cell viability, and may play a role in basal keratinocyte proliferation.
Bathing suit ichthyosis (BSI) is a striking and unique clinical form of autosomal recessive congenital ichthyosis characterized by pronounced scaling on the bathing suit areas but sparing of the extremities and the central face. Here we report on a series of 10 BSI patients. Our genetic, ultrastructural and biochemical investigations show that BSI is caused by transglutaminase-1 (TGase-1) deficiency. Altogether, we identified 13 mutations in TGM1-among them seven novel missense mutations and one novel nonsense mutation. Structural modeling for the Tyr276Asn mutation reveals that the residue is buried in the hydrophobic interior of the enzyme and that the hydroxyl side chain of Tyr276 is exposed to solvent in a cavity of the enzyme. Cryosections of healthy skin areas demonstrated an almost normal TGase activity, in contrast to the affected BSI skin, which only showed a cytoplasmic and clearly reduced TGase-1 activity. The distribution of TGase-1 substrates in the epidermis of affected skin corresponded to the situation in TGase-1 deficiency. Interestingly, the expression of TGase-3 and cathepsin D was reduced. Digital thermography validated a striking correlation between warmer body areas and presence of scaling in patients suggesting a decisive influence of the skin temperature. In situ TGase testing in skin of BSI patients demonstrated a marked decrease of enzyme activity when the temperature was increased from 25 to 37 degrees C. We conclude that BSI is caused by TGase-1 deficiency and suggest that it is a temperature-sensitive phenotype.
Netherton syndrome (NTS) is an autosomal recessive congenital ichthyosis featuring chronic inflammation of the skin, hair anomalies, epidermal hyperplasia with an impaired epidermal barrier function, failure to thrive and atopic manifestations. The disease is caused by mutations in the SPINK5 gene encoding the serine proteinase inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Sequence analyses of SPINK5 in seven NTS patients from five different families allowed us to identify two known and three novel mutations all creating premature termination codons. We developed a monoclonal antibody giving a strong signal for LEKTI in the stratum granulosum of normal skin and demonstrated absence of the protein in NTS epidermis. Immunoblot analysis revealed presence of full length LEKTI and of LEKTI cleavage fragments in normal hair roots, whereas in NTS hair roots LEKTI and its cleavage products were completely missing. Transglutaminase1 activity was present throughout almost the entire suprabasal epidermis in NTS, whereas in normal skin it is restricted to the stratum granulosum. In contrast, immunostaining for transglutaminase3 was absent or faint. Moreover, comparable with the altered pattern in psoriatic skin the epidermis in NTS strongly expressed the serine proteinase inhibitor SKALP/elafin and the anti-microbial protein human beta-defensin 2. These studies demonstrate LEKTI deficiency in the epidermis and in hair roots at the protein level and an aberrant expression of other proteins, especially transglutaminase1 and 3, which may account for the impaired epidermal barrier in NTS.
We show that the cyclin-dependent kinase inhibitor 1B (CDKN1B)/p27, previously known as a cell cycle inhibitor, is also localized within mitochondria. The migratory capacity of endothelial cells, which need intact mitochondria, is completely dependent on mitochondrial p27. Mitochondrial p27 improves mitochondrial membrane potential, increases adenosine triphosphate (ATP) content, and is required for the promigratory effect of caffeine. Domain mapping of p27 revealed that the N-terminus and C-terminus are required for those improvements. Further analysis of those regions revealed that the translocation of p27 into the mitochondria and its promigratory activity depend on serine 10 and threonine 187. In addition, mitochondrial p27 protects cardiomyocytes against apoptosis. Moreover, mitochondrial p27 is necessary and sufficient for cardiac myofibroblast differentiation. In addition, p27 deficiency and aging decrease respiration in heart mitochondria. Caffeine does not increase respiration in p27-deficient animals, whereas aged mice display improvement after 10 days of caffeine in drinking water. Moreover, caffeine induces transcriptome changes in a p27-dependent manner, affecting mostly genes relevant for mitochondrial processes. Caffeine also reduces infarct size after myocardial infarction in prediabetic mice and increases mitochondrial p27. Our data characterize mitochondrial p27 as a common denominator that improves mitochondria-dependent processes and define an increase in mitochondrial p27 as a new mode of action of caffeine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.