BackgroundMagnetic resonance imaging (MRI), together with histology, is widely used to diagnose and to monitor treatment in oncology. Spatial correspondence between these modalities provides information about the ability of MRI to characterize cancerous tissue. However, registration is complicated by deformations during pathological processing, and differences in scale and information content.Methodology/Principal FindingsThis study proposes a methodology for establishing an accurate 3D relation between histological sections and high resolution in vivo MRI tumor data. The key features of the methodology are: 1) standardized acquisition and processing, 2) use of an intermediate ex vivo MRI, 3) use of a reference cutting plane, 4) dense histological sampling, 5) elastic registration, and 6) use of complete 3D data sets. Five rat pancreatic tumors imaged by T2*-w MRI were used to evaluate the proposed methodology. The registration accuracy was assessed by root mean squared (RMS) distances between manually annotated landmark points in both modalities. After elastic registration the average RMS distance decreased from 1.4 to 0.7 mm. The intermediate ex vivo MRI and the reference cutting plane shared by all three 3D images (in vivo MRI, ex vivo MRI, and 3D histology data) were found to be crucial for the accurate co-registration between the 3D histological data set and in vivo MRI. The MR intensity in necrotic regions, as manually annotated in 3D histology, was significantly different from other histologically confirmed regions (i.e., viable and hemorrhagic). However, the viable and the hemorrhagic regions showed a large overlap in T2*-w MRI signal intensity.ConclusionsThe established 3D correspondence between tumor histology and in vivo MRI enables extraction of MRI characteristics for histologically confirmed regions. The proposed methodology allows the creation of a tumor database of spatially registered multi-spectral MR images and multi-stained 3D histology.
Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI.In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.
Although efficient delivery and distribution of treatment agents over the whole tumor is essential for successful tumor treatment, the distribution of most of these agents cannot be visualized. However, with single-photon emission computed tomography (SPECT), both delivery and uptake of radiolabeled peptides can be visualized in a neuroendocrine tumor model overexpressing somatostatin receptors. A heterogeneous peptide uptake is often observed in these tumors. We hypothesized that peptide distribution in the tumor is spatially related to tumor perfusion, vessel density and permeability, as imaged and quantified by DCE-MRI in a neuroendocrine tumor model. Four subcutaneous CA20948 tumor-bearing Lewis rats were injected with the somatostatin-analog 111In-DTPA-Octreotide (50 MBq). SPECT-CT and MRI scans were acquired and MRI was spatially registered to SPECT-CT. DCE-MRI was analyzed using semi-quantitative and quantitative methods. Correlation between SPECT and DCE-MRI was investigated with 1) Spearman’s rank correlation coefficient; 2) SPECT uptake values grouped into deciles with corresponding median DCE-MRI parametric values and vice versa; and 3) linear regression analysis for median parameter values in combined datasets. In all tumors, areas with low peptide uptake correlated with low perfusion/density/ /permeability for all DCE-MRI-derived parameters. Combining all datasets, highest linear regression was found between peptide uptake and semi-quantitative parameters (R2>0.7). The average correlation coefficient between SPECT and DCE-MRI-derived parameters ranged from 0.52-0.56 (p<0.05) for parameters primarily associated with exchange between blood and extracellular extravascular space. For these parameters a linear relation with peptide uptake was observed. In conclusion, the ‘exchange-related’ DCE-MRI-derived parameters seemed to predict peptide uptake better than the ‘contrast amount- related’ parameters. Consequently, fast and efficient diffusion through the vessel wall into tissue is an important factor for peptide delivery. DCE-MRI helps to elucidate the relation between vascular characteristics, peptide delivery and treatment efficacy, and may form a basis to predict targeting efficiency.
BackgroundSuccessful treatments of patients with somatostatin receptor (SSTR)-overexpressing neuroendocrine tumours (NET) comprise somatostatin-analogue lutetium-177-labelled octreotate (177Lu-TATE) treatment, also referred to as peptide receptor radionuclide therapy (PRRT), and temozolomide (TMZ) treatment. Their combination might result in additive effects. Using MRI and SPECT/CT, we studied tumour characteristics and therapeutic responses after different (combined) administration schemes in a murine tumour model in order to identify the optimal treatment schedule for PRRT plus TMZ.MethodsWe performed molecular imaging studies in mice bearing SSTR-expressing H69 (humane small cell lung cancer) tumours after single intravenous (i.v.) administration of 30 MBq 177Lu-TATE or TMZ (oral 50 mg/kg daily for 14 days). Tumour perfusion was evaluated weekly by dynamic contrast-enhanced MRI (DCE-MRI), whereas tumour uptake of 111In-octreotide was quantified using SPECT/CT until day 39 after treatment. Based on these results, seven different 177Lu-octreotate and TMZ combination schemes were evaluated for therapy response, varying the order and time interval of the two therapies and compared with single treatments.ResultsPRRT and TMZ both resulted in tumour size reduction, accompanied by significant changes in MRI characteristics such as an enhanced tumour perfusion. Moreover, TMZ treatment also resulted in increased uptake of the SST analogue 111In-octreotide until day 13. In the subsequent therapy study, 90 % of animals receiving 177Lu-TATE at day 14 after TMZ treatment showed complete response, being the best anti-tumour results among groups.ConclusionsMolecular imaging studies indicated that PRRT after TMZ treatment could induce optimal therapeutic effects because of enhanced tumour uptake of radioactivity after TMZ, which was confirmed by therapy responses. Therefore, clinical translation of TMZ treatment prior to PRRT might increase tumour responses in NET patients as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.