IMPORTANCE A computer algorithm that performs at or above the level of radiologists in mammography screening assessment could improve the effectiveness of breast cancer screening.OBJECTIVE To perform an external evaluation of 3 commercially available artificial intelligence (AI) computer-aided detection algorithms as independent mammography readers and to assess the screening performance when combined with radiologists. DESIGN, SETTING, AND PARTICIPANTSThis retrospective case-control study was based on a double-reader population-based mammography screening cohort of women screened at an academic hospital in Stockholm, Sweden, from 2008 to 2015. The study included 8805 women aged 40 to 74 years who underwent mammography screening and who did not have implants or prior breast cancer. The study sample included 739 women who were diagnosed as having breast cancer (positive) and a random sample of 8066 healthy controls (negative for breast cancer). MAIN OUTCOMES AND MEASURESPositive follow-up findings were determined by pathology-verified diagnosis at screening or within 12 months thereafter. Negative follow-up findings were determined by a 2-year cancer-free follow-up. Three AI computer-aided detection algorithms (AI-1, AI-2, and AI-3), sourced from different vendors, yielded a continuous score for the suspicion of cancer in each mammography examination. For a decision of normal or abnormal, the cut point was defined by the mean specificity of the first-reader radiologists (96.6%). RESULTSThe median age of study participants was 60 years (interquartile range, 50-66 years) for 739 women who received a diagnosis of breast cancer and 54 years (interquartile range, 47-63 years) for 8066 healthy controls. The cases positive for cancer comprised 618 (84%) screen detected and 121 (16%) clinically detected within 12 months of the screening examination. The area under the receiver operating curve for cancer detection was 0.956 (95% CI, 0.948-0.965) for AI-1, 0.922 (95% CI, 0.910-0.934) for AI-2, and 0.920 (95% CI, 0.909-0.931) for AI-3. At the specificity of the radiologists, the sensitivities were 81.9% for AI-1, 67.0% for AI-2, 67.4% for AI-3, 77.4% for first-reader radiologist, and 80.1% for second-reader radiologist. Combining AI-1 with first-reader radiologists achieved 88.6% sensitivity at 93.0% specificity (abnormal defined by either of the 2 making an abnormal assessment). No other examined combination of AI algorithms and radiologists surpassed this sensitivity level. CONCLUSIONS AND RELEVANCETo our knowledge, this study is the first independent evaluation of several AI computer-aided detection algorithms for screening mammography. The results of this study indicated that a commercially available AI computer-aided detection algorithm can assess screening mammograms with a sufficient diagnostic performance to be further evaluated as an independent reader in prospective clinical trials. Combining the first readers with the best algorithm identified more cases positive for cancer than combining the first readers with se...
Background We examined the potential change in cancer detection when using an artificial intelligence (AI) cancer-detection software to triage certain screening examinations into a no radiologist work stream, and then after regular radiologist assessment of the remainder, triage certain screening examinations into an enhanced assessment work stream. The purpose of enhanced assessment was to simulate selection of women for more sensitive screening promoting early detection of cancers that would otherwise be diagnosed as interval cancers or as next-round screen-detected cancers. The aim of the study was to examine how AI could reduce radiologist workload and increase cancer detection.Methods In this retrospective simulation study, all women diagnosed with breast cancer who attended two consecutive screening rounds were included. Healthy women were randomly sampled from the same cohort; their observations were given elevated weight to mimic a frequency of 0•7% incident cancer per screening interval. Based on the prediction score from a commercially available AI cancer detector, various cutoff points for the decision to channel women to the two new work streams were examined in terms of missed and additionally detected cancer.Findings 7364 women were included in the study sample: 547 were diagnosed with breast cancer and 6817 were healthy controls. When including 60%, 70%, or 80% of women with the lowest AI scores in the no radiologist stream, the proportion of screen-detected cancers that would have been missed were 0, 0•3% (95% CI 0•0-4•3), or 2•6% (1•1-5•4), respectively. When including 1% or 5% of women with the highest AI scores in the enhanced assessment stream, the potential additional cancer detection was 24 (12%) or 53 (27%) of 200 subsequent interval cancers, respectively, and 48 (14%) or 121 (35%) of 347 next-round screen-detected cancers, respectively.Interpretation Using a commercial AI cancer detector to triage mammograms into no radiologist assessment and enhanced assessment could potentially reduce radiologist workload by more than half, and pre-emptively detect a substantial proportion of cancers otherwise diagnosed later.
For AI researchers, access to a large and well-curated dataset is crucial. Working in the field of breast radiology, our aim was to develop a high-quality platform that can be used for evaluation of networks aiming to predict breast cancer risk, estimate mammographic sensitivity, and detect tumors. Our dataset, Cohort of Screen-Aged Women (CSAW), is a population-based cohort of all women 40 to 74 years of age invited to screening in the Stockholm region, Sweden, between 2008 and 2015. All women were invited to mammography screening every 18 to 24 months free of charge. Images were collected from the PACS of the three breast centers that completely cover the region. DICOM metadata were collected together with the images. Screening decisions and clinical outcome data were collected by linkage to the regional cancer center registers. Incident cancer cases, from one center, were pixel-level annotated by a radiologist. A separate subset for efficient evaluation of external networks was defined for the uptake area of one center. The collection and use of the dataset for the purpose of AI research has been approved by the Ethical Review Board. CSAW included 499,807 women invited to screening between 2008 and 2015 with a total of 1,182,733 completed screening examinations. Around 2 million mammography images have currently been collected, including all images for women who developed breast cancer. There were 10,582 women diagnosed with breast cancer; for 8463, it was their first breast cancer. Clinical data include biopsy-verified breast cancer diagnoses, histological origin, tumor size, lymph node status, Elston grade, and receptor status. One thousand eight hundred ninety-one images of 898 women had tumors pixel level annotated including any tumor signs in the prior negative screening mammogram. Our dataset has already been used for evaluation by several research groups. We have defined a high-volume platform for training and evaluation of deep neural networks in the domain of mammographic imaging.
Purpose In clinically node-positive breast cancer patients receiving neoadjuvant systemic therapy (NST), nodal metastases can be initially marked and then removed during surgical axillary staging. Marking methods vary significantly in terms of feasibility and cost. The purpose of the extended TATTOO trial was to report on the false-negative rate (FNR) of the low-cost method carbon tattooing. Methods The international prospective single-arm TATTOO trial included clinically node-positive breast cancer patients planned for NST from November 2017 to January 2021. For the present analysis, patients who received both the targeted procedure with or without an additional sentinel lymph node (SLN) biopsy and a completion axillary lymph node dissection (ALND) were selected. Primary endpoint was the FNR. Results Out of 172 included patients, 149 had undergone a completion ALND. The detection rate for the tattooed node was 94.6% (141 out of 149). SLN biopsy was attempted in 132 out of 149 patients with a detection rate of 91.7% (121 out of 132). SLN and tattooed node were identical in 58 out of 121 individuals (47.9%). The combined procedure, i.e. targeted axillary dissection (TAD) was successful in 147 of 149 cases (98.7%). Four out of 65 patients with a clinically node-negative status after NST had a negative TAD but metastases on ALND, corresponding to a FNR of 6.2%. All false-negative TAD procedures were performed in the first 2 years of the trial (2018–2019, p = 0.022). Conclusion Carbon tattooing is a feasible marking method for TAD with a high detection rate and an acceptably low FNR. The TATTOO trial was preregistered as prospective trial before initiation at the University of Rostock, Germany (DRKS00013169).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.