Metabolic disorders such as type 2 diabetes cause hepatic endoplasmic reticulum (ER) stress, which affects neutral lipid metabolism. However, the role of ER stress in cholesterol metabolism is incompletely understood. Here, we show that induction of acute ER stress in human hepatic HepG2 cells reduced ABCA1 expression and caused ABCA1 redistribution to tubular perinuclear compartments. Consequently, cholesterol efflux to apoA-I, a key step in nascent HDL formation, was diminished by 80%. Besides ABCA1, endogenous apoA-I expression was reduced upon ER stress induction, which contributed to reduced cholesterol efflux. Liver X receptor, a key regulator of ABCA1 in peripheral cells, was not involved in this process. Despite reduced cholesterol efflux, cellular cholesterol levels remained unchanged during ER stress. This was due to impaired de novo cholesterol synthesis by reduction of HMG-CoA reductase activity by 70%, although sterol response element-binding protein-2 activity was induced. In mice, ER stress induction led to a marked reduction of hepatic ABCA1 expression. However, HDL cholesterol levels were unaltered, presumably because of scavenger receptor class B, type I downregulation under ER stress. Taken together, our data suggest that ER stress in metabolic disorders reduces HDL biogenesis due to impaired hepatic ABCA1 function.
The mechanisms hallmarking melanoma progression are insufficiently understood. Here we studied the impact of the unfolded protein response (UPR) - a signalling cascade playing ambiguous roles in carcinogenesis - in melanoma malignancy. We identified isogenic patient-derived melanoma cell lines harboring BRAFV600E-mutations as a model system to study the role of intrinsic UPR in melanoma progression. We show that the activity of the three effector pathways of the UPR (ATF6, PERK and IRE1) was increased in metastatic compared to non-metastatic cells. Increased UPR-activity was associated with increased flexibility to cope with ER stress. The activity of the ATF6- and the PERK-, but not the IRE-pathway, correlated with poor survival in melanoma patients. Using whole-genome expression analysis, we show that the UPR is an inducer of FGF1 and FGF2 expression and cell migration. Antagonization of the UPR using the chemical chaperone 4-phenylbutyric acid (4-PBA) reduced FGF expression and inhibited cell migration and viability. Consistently, FGF expression positively correlated with the activity of ATF6 and PERK in human melanomas. We conclude that chronic UPR stimulates the FGF/FGF-receptor signalling axis and promotes melanoma progression. Hence, the development of potent chemical chaperones to antagonize the UPR might be a therapeutic approach to target melanoma.
Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages.
Scavenger receptor class B, type I (SR-BI) is the main receptor for high-density lipoprotein (HDL) and an emerging atheroprotective candidate. A central function of SR-BI is the delivery of HDL-derived cholesterol to the liver for subsequent excretion into the bile. Here, we investigated the regulation of SR-BI by the unfolded protein response (UPR), an adaptive mechanism induced by endoplasmic reticulum (ER) stress, which is frequently activated in metabolic disorders. We provide evidence that induction of acute ER stress by well-characterized chemical inducers leads to decreased SR-BI expression in hepatocyte-derived cell lines. This results in a functional reduction of selective lipid uptake from HDL. However, the regulation of SR-BI by ER stress is not a direct consequence of altered cellular cholesterol metabolism. Finally, we show that SR-BI down-regulation by the UPR might be a compensatory mechanism to provide partial adaption to ER stress. The observed down-regulation of SR-BI by ER stress in hepatic cells might contribute to the unfavorable effects of metabolic disorders on cholesterol homeostasis and cardiovascular diseases.
High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.