Background: Advanced digital workflows in orthodontics and dentistry often require a combination of different software solutions to create patient appliances, which may be a complex and time-consuming process. The main objective of this technical note is to discuss treatment of craniofacial anomalies using digital technologies. We present a fully digital, linear workflow for manufacturing palatal plates for infants with craniofacial anomalies based on intraoral scanning. Switching to intraoral scanning in infant care is advantageous as taking conventional impressions carries the risk of impression material aspiration and/or infections caused by material remaining in the oronasal cavity. Material and methods: The fully digital linear workflow presented in this technical note can be used to design and manufacture palatal plates for cleft palate patients as well as infants with functional disorders. We describe the workflow implemented in an infant with trisomy 21. The maxilla was registered using a digital scanner and a stimulation plate was created using dental CAD software and an individual impression tray module on a virtual model. Plates were manufactured using both additive and subtractive methods. Methacrylate based light curing resin and Poly-Ether-Ether-Ketone were the materials used. Results: The palatal area was successfully scanned to create a virtual model. The plates fitted well onto the palatal area. Manual post-processing was necessary to optimize a functional ridge along the vestibular fold and remove support structures from the additively manufactured plate as well as the milled plate produced from a blank. The additively manufactured plate fitted better than the milled one. Conclusion: Implementing a fully digital linear workflow into clinical routine for treatment of neonates and infants with craniofacial disorders is feasible. The software solution presented here is suitable for this purpose and does not require additional software for the design. This is the key advantage of this workflow, which makes digital treatment accessible to all clinicians who want to deal with digital technology. Whether additive or subtractive manufacturing is preferred depends on the appliance material of choice and influences the fit of the appliance.
Background Orthodontic treatment of newborns and infants with Robin-Sequence using the Tübingen Palatal Plate (TPP) is a complex procedure that could benefit from simplification through digitalization. The design of the velar extension (spur) and the palatal base determines the success of the treatment. Therefore, a prototype must be produced and inserted under endoscopic supervision in order to determine the appropriate shape, length and position of the spur. This technical note demonstrates a fully digital workflow for the design and manufacturing of a functional TPP prototype, based on an intraoral scan. This prototype can be altered and individualized digitally for each patient. After the shape and position of the spur have been optimized, the prototype is duplicated using a silicone mold. Then the definitive TPP is manufactured and inserted. We aim to present a workflow which facilitates the fitting procedure and does not require a conventional impression or a physical model to create the appliance. Methods As described in part I of this series, the intraoral scan is performed using the 3Shape TRIOS3 scanner and its corresponding acquisition software. The virtual model is rendered in the 3Shape ortho appliance designer and the base of the palatal plate is designed in the 3Shape dental designer. The palatal plate and the virtual model are then imported into Autodesk Meshmixer and a standardized spur is positioned and merged with the base. The TPP is exported in Standard Tessellation Language (STL) format and manufactured on a W2P Solflex 170 DLP printer using VOCO VPrint Splint material (MDR Class IIa). Results Based on an intraoral scan, the TPP prototype could be successfully manufactured and proved suitable for the patients’ treatment. Conclusion The new digital workflow for the design of the TPP can been successfully implemented into daily clinical routine in our facility. Patients could be alleviated from having to undergo conventional impression procedures and fitting of the TPP could be facilitated by producing multiple functional prototypes for endoscopic evaluation. Through rapid prototyping, the expenditure of the fitting process was reduced, which makes the TPP therapy more efficient and accessible to a wider range of clinicians.
Summary Objective The aim of this study was to evaluate intraoral scanning (IOS) in infants, neonates, and small children with craniofacial anomalies for its feasibility, scanning duration, and success rate. Impression taking in vulnerable patients can be potentially life-threatening, with the risk of airway obstruction and aspiration of impression material. The advantage of increasingly digitalized dentistry is demonstrated. Materials and methods IOS was captured with the Trios 3® (3Shape, Copenhagen, Denmark) intraoral scanner. The underlying disorders were divided into cleft lip and palate (CLP), Trisomy 21 (T21), Robin Sequence (RS), Treacher Collins syndrome (TC), and isolated mandibular retrognathia (MR). Scan data were analysed by scanning duration, number of images, possible correlations of these factors with the different craniofacial disorders, patient age, and relationship between first and subsequent scans. Clinical experiences with the repeated digital impressions are described. Results Patient data of 141 scans in 83 patients were analysed within an 11-month period. Patients had a median age of 137 days. Median scanning duration was 138 seconds, resulting in a median of 352 images. There was a statistically significant difference in scanning duration (P = 0.001) between infants and neonates. IOS took longest in patients with CLP (537 seconds) and shortest in T21 patients (21 seconds), although there was no statistically significant difference between aetiologies. There was no statistically significant difference between first and subsequent scans in scanning duration. In four cases the IOS had to be repeated, and one patient ultimately required conventional impression taking (all CLP patients; success rate 94%). No severe adverse events occurred. Conclusion IOS is a fast, safe, and feasible procedure for neonates, small children, and infants with craniofacial malformations. One special challenge for both technician and user was identified in patients with CLP, though implementing this new approach of digital impression taking was otherwise found to be highly successful in everyday clinical routine.
Background Lyme disease is the most frequent tick-borne infectious disease in Europe. It often presents with a wide variety of symptoms. For this reason, affection of the temporomandibular joint (TMJ) caused by Lyme disease (LD) can be misdiagnosed as a common temporomandibular disorder (TMD). Case presentation The purpose of this case report of a 25-year-old woman presenting to the Departments of Orthodontics and Oral and Maxillofacial Surgery with extensive symptoms of temporomandibular disorder is to illustrate the delayed diagnosis of Lyme disease which was only made after extensive therapy of the temporomandibular joint. The specialist literature only reports a few cases of patients suffering from Lyme disease with TMJ manifestations. Conclusion This case report and the relevant literature review aim to emphasize the importance of accurate request of medical history and differential diagnosis of acute TMJ arthritis and arthralgia. Early interdisciplinary diagnosis of Lyme disease and early antibiotic therapy are essential to avoid misdiagnosis and unnecessary, sometimes invasive, therapies.
Lyme disease is the most frequent tick-borne infectious disease in Europe. It often presents with a wide variety of symptoms. For this reason, affection of the temporomandibular joint (TMJ) caused by Lyme disease (LD) can be misdiagnosed as a common temporomandibular disorder (TMD). The purpose of this case report of a 25-year old woman presenting to the Departments of Orthodontics and Maxillofacial Surgery with extensive symptoms of Temporomandibular Disorder is to illustrate the delayed diagnosis of Lyme disease, which was only made after extensive therapy of the temporomandibular joint. The specialist literature only reports a few cases of patients suffering from Lyme disease with TMJ manifestations. This case report and the relevant literature review aim to emphasize the importance of accurate request of medical history and differential diagnosis of acute TMJ arthritis and arthralgia. Early interdisciplinary diagnosis of Lyme disease and early antibiotic therapy are essential to avoid misdiagnosis and unnecessary, sometimes invasive, therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.