The EMs and PMs of CYP2D6 treated with tramadol behaved differently in static and dynamic pupillometry. The reason for this could largely be explained with the aid of the metaboliser status and the pharmacokinetic properties of tramadol. In EMs, the pupillometric response was mainly driven by the (+)-M1, which comprises the mu action component of tramadol; whereas, in PMs, the non-mu component appears to play an important role. Thus, pupillometry was found to be useful in pharmacodynamic profiling and provides a good correlation with the pharmacokinetics.
Tapentadol is a novel, centrally acting oral analgesic with a dual mode of action that has demonstrated efficacy in preclinical and clinical models of pain relief. The present study investigated and characterized the absorption, metabolism, and excretion of tapentadol in humans. Four healthy male subjects received a single 100-mg oral dose of 3-[14C]-labeled tapentadol HCl for evaluation of the pharmacokinetics of the drug and the excretion balance of radiocarbon. The concentration-time profiles of radiocarbon in whole blood and serum and radiocarbon excretion in the urine and feces, and the expired CO2 were determined. The serum pharmacokinetics and excretion kinetics of tapentadol and its conjugates were assessed, as was its tolerability. Absorption was rapid (with a mean maximum serum concentration [Cmax], 2.45 microg-eq/ml; a time to Cmax, 1.25-1.5 h), and the drug was present primarily in the form of conjugated metabolites (conjugated:unconjugated metabolites = 24:1). Excretion of radiocarbon was rapid and complete (>95% within 24 h; 99.9% within 5 days) and almost exclusively renal (99%: 69% conjugates; 27% other metabolites; 3% in unchanged form). No severe adverse events or clinically relevant changes in vital signs, laboratory measurements, electrocardiogram recording, or physical examination findings were reported. In our study group, it was found that a single oral dose of tapentadol was rapidly absorbed, then excreted into the urine, primarily in the form of conjugated metabolites, and was well tolerated.
Absolute bioavailability for both tapentadol IR and tapentadol PR was ~ 32% under fasted conditions. Extent of exposure (AUC) for tapentadol PR was very similar to tapentadol IR, whereas Cmax was lower and HVD/MRT longer for the prolonged-release formulation. Overall, the pharmacokinetic characteristics of tapentadol PR enable a twice-daily dosing regimen to be used; such a regimen is expected to improve patient compliance during chronic use.
These results suggest that tapentadol, which has combined MOR and NRI activities, may have a lower impact on sex hormone concentrations than pure opioid analgesics, such as morphine or oxycodone. The data and mechanistic rationale presented herein provide a justification for conducting additional hypothesis testing studies, and are not intended to be used as a basis for clinical decision making. Future studies may help elucidate whether the observed trends are clinically significant and would translate into a reduced incidence of OPIAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.