We demonstrate coupling and entangling of quantum states in a pair of vertically aligned, self-assembled quantum dots by studying the emission of an interacting electron-hole pair (exciton) in a single dot molecule as a function of the separation between the dots. An interaction-induced energy splitting of the exciton is observed that exceeds 30 millielectron volts for a dot layer separation of 4 nanometers. The results are interpreted by mapping the tunneling of a particle in a double dot to the problem of a single spin. The electron-hole complex is shown to be equivalent to entangled states of two interacting spins.
Visible-stimulated emission in a semiconductor quantum dot (QD) laser structure has been demonstrated. Red-emitting, self-assembled QDs of highly strained InAlAs have been grown by molecular beam epitaxy on a GaAs substrate. Carriers injected electrically from the doped regions of a separate confinement heterostructure thermalized efficiently into the zero-dimensional QD states, and stimulated emission at approximately 707 nanometers was observed at 77 kelvin with a threshold current of 175 milliamperes for a 60-micrometer by 400-micrometer broad area laser. An external efficiency of approximately 8.5 percent at low temperature and a peak power greater than 200 milliwatts demonstrate the good size distribution and high gain in these high-quality QDs.
Mammalian cold thermoreceptors encode steady-state temperatures into characteristic temporal patterns of action potentials. We propose a mechanism for the encoding process. It is based on Plant's ionic model of slow wave bursting, to which stochastic forcing is added. The model reproduces firing patterns from cat lingual cold receptors as the parameters most likely to underlie the thermosensitivity of these receptors varied over a 25 degrees C range. The sequence of firing patterns goes from regular bursting, to simple periodic, to stochastically phase-locked firing or "skipping." The skipping at higher temperatures is shown to necessitate an interaction between noise and a subthreshold endogenous oscillation in the receptor. The basic period of all patterns is robust to noise. Further, noise extends the range of encodable stimuli. An increase in firing irregularity with temperature also results from the loss of stability accompanying the approach by the slow dynamics of a reverse Hopf bifurcation. The results are not dependent on the precise details of the Plant model, but are generic features of models where an autonomous slow wave arises through a Hopf bifurcation. The model also addresses the variability of the firing patterns across fibers. An alternate model of slow-wave bursting (Chay and Fan 1993) in which skipping can occur without noise is also analyzed here in the context of cold thermoreception. Our study quantifies the possible origins and relative contribution of deterministic and stochastic dynamics to the coding scheme. Implications of our findings for sensory coding are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.