In 1988, it was reported that the full nucleotide sequences of 18 hepatitis B virus (HBV) strains clustered into four genetic groups (A to D) with more than 8 % divergence between the groups. This classification of strains in terms of genome sequence has since proven to be an important tool in the understanding of HBV epidemiology and evolution and has been expanded to include three more genotypes. In parallel with the HBV genotypes described in humans, HBV strains isolated from different primates and hepadnaviruses found in woodchucks, ground squirrels, ducks and herons have been studied. Sequence differences between HBV genotypes can lead to structural differences at the level of the pregenome and can also lead to dramatic differences at the translational level when specific and commonly occurring mutations occur. There is increasing evidence that the clinical picture, the response to treatment and the long-term prognosis may differ depending on which genotype has infected the patient. The consideration of traditional serological patterns in a patient must therefore take the genotype of the infecting strain into account. Nucleotide variability between HBV strains has been used in several studies to trace routes of transmission and, since it is becoming increasingly clear that the differences between HBV genotypes are important, the need for reliable and easy methods of differentiating HBV genotypes has arisen. This review summarizes the knowledge of HBV genotypes with regard to their genetic, structural and clinically significant differences and their origin and evolution in the context of the hepadnaviruses in general.
A translational stop in the hepatitis B virus (HBV) precore codon 28 and specific changes in the core promoter region of the X gene have been suggested to influence the level of circulating HBeAg in patients. We analysed the core promoter region and precore sequences from 59 HBV strains (including 14 from the databank) of different genotypes and from patients with different HBeAg/anti-HBe patterns. The initiator and TATA elements for transcription of precore and pregenomic RNA were highly conserved. The majority of X gene deletions in the core promoter region would lead to translational frame-shifts and stops, truncating the Cterminal end of the X protein. We found significant associations between specific changes in core promoter positions 1762 to 1764, or in precore codon 28, and absence of circulating HBeAg. For the core promoter mutations alone, this association was
Hepatitis B virus (HBV) replication is initiated by HBV RT binding to the highly conserved encapsidation signal, epsilon, at the 5′ end of the RNA pregenome. Epsilon contains an apical stem–loop, whose residues are either totally conserved or show rare non-disruptive mutations. Here we present the structure of the apical stem–loop based on NOE, RDC and 1H chemical shift NMR data. The 1H chemical shifts proved to be crucial to define the loop conformation. The loop sequence 5′-CUGUGC-3′ folds into a UGU triloop with a CG closing base pair and a bulged out C and hence forms a pseudo-triloop, a proposed protein recognition motif. In the UGU loop conformations most consistent with experimental data, the guanine nucleobase is located on the minor groove face and the two uracil bases on the major groove face. The underlying helix is disrupted by a conserved non-paired U bulge. This U bulge adopts multiple conformations, with the nucleobase being located either in the major groove or partially intercalated in the helix from the minor groove side, and bends the helical stem. The pseudo-triloop motif, together with the U bulge, may represent important anchor points for the initial recognition of epsilon by the viral RT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.