The protease Pim1/LON, a member of the AAA+ family of homo-oligomeric ATP-dependent proteases, is responsible for the degradation of soluble proteins in the mitochondrial matrix. To establish the molecular parameters required for the specific recognition and proteolysis of substrate proteins by Pim1, we analyzed the in organello degradation of imported reporter proteins containing different structural properties. The amino acid composition at the amino-terminal end had no major effect on the proteolysis reaction. However, proteins with an amino-terminal extension of less than 60 amino acids in front of a stably folded reporter domain were completely resistant to proteolysis by Pim1. Substrate proteins with a longer amino-terminal extension showed incomplete proteolysis, resulting in the generation of a defined degradation fragment. We conclude that Pim1-mediated protein degradation is processive and is initiated from an unstructured amino-terminal segment. Resistance to degradation and fragment formation was abolished if the folding state of the reporter domain was destabilized, indicating that Pim1 is not able to unravel folded proteins for proteolysis. We propose that the requirement for an exposed, large, non-native protein segment, in combination with a limited unfolding capability, accounts for the selectivity of the protease Pim1 for damaged or misfolded polypeptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.