Abstract. In an experiment with Rosé wine, 27 different commercial yeasts were tested for their influence on the amino acid pattern of the wine. Amino acids are precursors for aromatic substances; therefore a large variation of the amino acid values in the wine was expected. Blaufränkisch grapes with 20 • KMW were matured in the cellar with 27 different commercial yeasts. The fermentation was carried out in 34l vessels. The wines were measured for amino acids using an HP 1200 liquid chromatograph and HP-FLD1100 according to Umagat. The wines showed 13.5% alcohol and little residual sugar. The measurement results of the amino acids of the different wines showed large variations. For example, the amount of the amino acid alanine in wine varied from 17 to 138 mg. In particular, the wines of the yeast Pino Type showed the highest amounts of alanine in comparison to the other fermented wines.
Red wine is rich in phenolic compounds, which chiefly determine its characteristic taste. One of its major phenolic acid constituents for which an astringency, yet no clear contribution to bitter taste has been reported, is gallic acid (GA). In previous studies, we have demonstrated bitter-tasting constituents to regulate cellular proton secretion (PS) as a key mechanism of gastric acid secretion via activation of bitter taste sensing receptors (TAS2Rs). Here, we hypothesized a contributing role of GA to the red wine-stimulated effect on PS in human gastric tumor cells (HGT-1 cells). Sensory analyses revealed that 10 μM GA as the lowest concentration tested more bitter than tap water, with increasing bitter ratings up to 1000 μM. In HGT-1 cells, the concentration of 10 μM GA evoked the most pronounced effect on PS secretion, either when added to cells as in-water solution or when spiked to a red wine matrix. GA-spiking of Zweigelt and Blaufrankisch red wine samples up to a concentration of 10 μM resulted in an equally stimulated PS, whereas the non-GA-spiked wine samples demonstrated contrary effects on PS, indicating a functional role of GA on PS. Involvement of TAS2R4 in the GA-induced PS was verified by means of an HGT-1 homozygote CRISPR-Cas9 TAS2R4 knockout approach. Moreover, gene expression analyses revealed GA to increase TAS2R4. These results demonstrate a functional role of TAS2R4 in GA-evoked PS as a key mechanism of gastric acid secretion aiding digestion. Moreover, our data provide mechanistic insights, which will help to produce stomach-friendly red wines.
We evaluated the chemical composition and antioxidant activity of 30 red wines from Austria (cv. Cabernet-Sauvignon, Blaufraenkisch and Zweigelt) and 20 wines from Montenegro (cv. Cabernet-Sauvignon and Vranac) from three consecutive vintages: 2014, 2015 and 2016. We determined spectrophotometrically the contents of total phenol (TP), total anthocyanin (TA) and low- and high-molecular-weight proanthocyanidins (LMP and HMP respectively). We identified and quantified 18 phenolic compounds (hydroxycinnamic acids, hydroxybenzoic acids, stilbenes and flavan-3-ols) by high-performance liquid chromatography. In addition, we used Fourier-transform infrared spectroscopy for chemical analyses of the main wine parameters. Austrian autochthonous wines exhibited a similar chemical composition (alcohol 12.4 vol%, pH 3.38). Blaufraenkisch wines showed higher TP, HMP and LMP than Zweigelt wines; however, TA content was similar. Blaufraenkisch wines also showed higher phenolic acid, flavan-3-ol and stilbene contents than Zweigelt wines. Montenegrin autochthonous Vranac wines showed a typical chemical composition (alcohol 13.0 vol%, pH 3.42), and medium to high levels of phenols: TP, HMP, LMP, TA, HCA and flavan-3-ols. On the other hand, they showed a moderate stilbene content. Cabernet-Sauvignon wines from Austria and Montenegro exhibited some similarities in phenolic composition: TP, HMP, LMP and TA. There were notable variations in the phenolic acid and flavan-3-ol contents, especially the stilbene content, which was much higher in the Austrian wines than in the Montenegrin wines. These findings evidence an important impact of climatic conditions on these compounds. The antioxidant activity in all investigated wines was high and correlated strongly with TP, total phenol index, HMP and LMP in wines. The vintage influenced the chemical composition and content of all examined phenolic groups, except flavan-3-ols. Wines from the vintage with the best maturity (2015) contained the highest content of spectrophotometrically determined phenolic compounds and lowest level of phenolic acids and stilbenes. Principle component analysis showed that wines were mainly discriminated by variety and origin but not by vintage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.