Cellular immune responses to adeno-associated viral (AAV) vectors used for gene therapy have been linked to attenuated transgene expression and loss of efficacy. The impact of such cellular immune responses on the clinical efficacy of alipogene tiparvovec (Glybera; AAV1-LPL(S447X); uniQure), a gene therapy consisting of intramuscular administration of a recombinant AAV1 mediating muscle-directed expression of lipoprotein lipase (LPL), was investigated. Five subjects with LPL deficiency (LPLD) were administered intramuscularly with a dose of 1 × 10(12) gc/kg alipogene tiparvovec. All subjects were treated with immune suppression starting shortly before administration of alipogene tiparvovec and maintained until 12 weeks after administration. Systemic antibody and T cell responses against AAV1 and LPL(S447X), as well as local cellular immune responses in the injected muscle, were investigated in five LPLD subjects. Long-term transgene expression was demonstrated despite a transient systemic cellular response and a stable humoral immune response against the AAV1 capsid protein. Cellular infiltrates were found in four of the five subjects but were not associated with adverse clinical events or elevation of inflammation markers. Consistent herewith, CD8+ T cells in the infiltrates lacked cytotoxic potential. Furthermore, FoxP3+/CD4+ T cells were found in the infiltrates, suggesting that multiple mechanisms contribute to local tolerance. Systemic and local immune responses induced by intramuscular injection of alipogene tiparvovec did not appear to have an impact on safety and did not prevent LPL transgene expression. These findings support the use of alipogene tiparvovec in individuals with LPLD and indicate that muscle-directed AAV-based gene therapy remains a promising approach for the treatment of human diseases.
Enterocytes are important for maintaining arginine homeostasis in neonatal mice. Graded arginine deficiency causes graded impairment of skin, muscle, and lymphoid development. The effects of arginine deficiency are not mediated by impaired synthesis of creatine or by incomplete charging of arginyl-transfer RNA.
Key Points• IA procedure decrease anti-AAV5 NABs to levels compatible with a successful AAV5 vector readministration.• Patients positive for anti-AAV antibodies could benefit from AAVbased gene therapy after IA treatment.Adeno-associated virus (AAV)-based liver gene therapy has been shown to be clinically successful. However, the presence of circulating neutralizing antibodies (NABs) against AAV vector capsids remains a major challenge as it may prevent successful transduction of the target cells. Therefore, there is a need to develop strategies that would enable AAV-mediated gene delivery to patients with preexisting anti-AAV NABs. In the current study, the feasibility of using an immunoadsorption (IA) procedure for repeated, liver-targeted gene delivery in nonhuman primates was explored. The animals were administered IV with recombinant AAV5 (rAAV5) carrying the reporter gene human secreted embryonic alkaline phosphatase (hSEAP). Seven weeks after the first rAAV treatment, all of the animals were readministered with rAAV5 carrying the therapeutic hemophilia B gene human factor IX (hFIX). Half of the animals administered with rAAV5-hSEAP underwent IA prior to the second rAAV5 exposure.The transduction efficacies of rAAV5-hSEAP and rAAV5-hFIX were assessed by measuring the levels of hSEAP and hFIX proteins. Although no hFIX was detected after rAAV5-hFIX readministration without prior IA, all animals submitted to IA showed therapeutic levels of hFIX expression, and a threshold of anti-AAV5 NAB levels compatible with successful readministration was demonstrated. In summary, our data demonstrate that the use of a clinically applicable IA procedure enables successful readministration of an rAAV5-based gene transfer in a clinically relevant animal model. Finally, the analysis of anti-AAV NAB levels in human subjects submitted to IA confirmed the safety and efficacy of the procedure to reduce anti-AAV NABs. Furthermore, clinical translation was assessed using an immunoglobulin G assay as surrogate.
The rising humoral and cellular immune responses against OVA protein after intramuscular delivery can be efficiently reduced by the use of mir-142-3p target sequences.
Apart from its role in the synthesis of protein and nitric oxide (NO), and in ammonia detoxification, the amino acid arginine exerts an immunosupportive function. We have studied the role of arginine in immune defense mechanisms in the developing postnatal immune system. In suckling mice, arginine is produced in the small intestine. In F/A-2 +/+ transgenic mice, which overexpress arginase in their enterocytes, circulating and tissue arginine concentrations are reduced to 30-35% of controls. In these mice, the development and composition of the T cell compartment did not reveal abnormalities. However, in peripheral lymphoid organs and the small intestine, B cell cellularity and the number and size of Peyer's patches were drastically reduced, and serum IgM levels were significantly decreased. These phenotypes could be traced to an impaired transition from the pro-to pre-B cell stage in the bone marrow. Cytokine receptor levels in the bone marrow were normal. The development of the few peripheral B cells and their proliferative response after in vitro stimulation was normal. The disturbance in B cell maturation was dependent on decreased arginine levels, as this phenotype disappeared upon arginine supplementation and was not seen in NO synthase-or ornithine transcarbamoylase-deficient mice. We conclude that arginine deficiency impairs early B cell maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.