BackgroundThe xanthophyll astaxanthin is a high-value compound with applications in the nutraceutical, cosmetic, food, and animal feed industries. Besides chemical synthesis and extraction from naturally producing organisms like Haematococcus pluvialis, heterologous biosynthesis in non-carotenogenic microorganisms like Escherichia coli, is a promising alternative for sustainable production of natural astaxanthin. Recent achievements in the metabolic engineering of E. coli strains have led to a significant increase in the productivity of carotenoids like lycopene or β-carotene by increasing the metabolic flux towards the isoprenoid precursors. For the heterologous biosynthesis of astaxanthin in E. coli, however, the conversion of β-carotene to astaxanthin is obviously the most critical step towards an efficient biosynthesis of astaxanthin.ResultsHere we report the construction of the first plasmid-free E. coli strain that produces astaxanthin as the sole carotenoid compound with a yield of 1.4 mg/g cdw (E. coli BW-ASTA). This engineered E. coli strain harbors xanthophyll biosynthetic genes from Pantoea ananatis and Nostoc punctiforme as individual expression cassettes on the chromosome and is based on a β-carotene-producing strain (E. coli BW-CARO) recently developed in our lab. E. coli BW-CARO has an enhanced biosynthesis of the isoprenoid precursor isopentenyl diphosphate (IPP) and produces β-carotene in a concentration of 6.2 mg/g cdw. The expression of crtEBIY along with the β-carotene-ketolase gene crtW148 (NpF4798) and the β-carotene-hydroxylase gene (crtZ) under controlled expression conditions in E. coli BW-ASTA directed the pathway exclusively towards the desired product astaxanthin (1.4 mg/g cdw).ConclusionsBy using the λ-Red recombineering technique, genes encoding for the astaxanthin biosynthesis pathway were stably integrated into the chromosome of E. coli. The expression levels of chromosomal integrated recombinant biosynthetic genes were varied and adjusted to improve the ratios of carotenoids produced by this E. coli strain. The strategy presented, which combines chromosomal integration of biosynthetic genes with the possibility of adjusting expression by using different promoters, might be useful as a general approach for the construction of stable heterologous production strains synthesizing natural products. This is the case especially for heterologous pathways where excessive protein overexpression is a hindrance.
The biosynthesis of natural products in a fast growing and easy to manipulate heterologous host system, such as Escherichia coli, is of increasing interest in biotechnology. This procedure allows the investigation of complex natural product biosynthesis and facilitates the engineering of pathways. Here we describe the cloning and the heterologous expression of tocochromanol (vitamin E) biosynthesis genes in E. coli. Tocochromanols are synthesized solely in photosynthetic organisms (cyanobacteria, algae, and higher green plants). For recombinant tocochromanol biosynthesis, the genes encoding hydroxyphenylpyruvate dioxygenase (hpd), geranylgeranylpyrophosphate synthase (crtE), geranylgeranylpyrophosphate reductase (ggh), homogentisate phytyltransferase (hpt), and tocopherol-cyclase (cyc) were cloned in a stepwise fashion and expressed in E. coli. Recombinant E. coli cells were cultivated and analyzed for tocochromanol compounds and their biosynthesis precursors. The expression of only hpd from Pseudomonas putida or crtE from Pantoea ananatis resulted in the accumulation of 336 mg L(-1) homogentisate and 84 microg L(-1) geranylgeranylpyrophosphate in E. coli cultures. Simultaneous expression of hpd, crtE, and hpt from Synechocystis sp. under the control of single tac-promoter resulted in the production of methyl-6-geranylgeranyl-benzoquinol (67.9 microg g(-1)). Additional expression of the tocopherol cyclase gene vte1 from Arabidopsis thaliana resulted in the novel formation of a vitamin E compound-delta-tocotrienol (15 microg g(-1))-in E. coli.
SummaryAnalysing culture supernatants of yeast and hyphal cells of Candida albicans, we found two close homologues of pathogenesis-related (PR-) 1 proteins, Rbe1p and Rbt4p, in the secretome. Due to sequence homology, three additional, yet not characterized open reading frames, ORF19.6200, ORF19.2787 and ORF19.2336, together with RBE1 and RBT4 were assigned to a novel family of CaPRY proteins. In a Drbe1/Drbt4 deletion strain, genome-wide transcriptional analysis revealed differential transcription of only a limited set of genes implicated in virulence and oxidative stress response. Single deletion of RBE1 or RBT4 in a clinical C. albicans isolate resulted in a moderate but significant attenuation in virulence in a mouse model for disseminated candidiasis. However, a synergistic effect was observed in a Drbe1/Drbt4 double deletion strain, where virulence was strongly affected. Remarkably, transcription of RBT4 and RBE1 was each upregulated in blastospores of Drbe1 or hyphae of Drbt4 deletion strains respectively, indicating functional complementation thereby compensating a potential virulence defect in the single deletion strains. Furthermore, the double deletion strain showed increased sensitivity to attack by polymorphonuclear leucocytes. Therefore, the crucial contribution of both C. albicans pathogenesis-related proteins to virulence might be vested in protection against phagocyte attack.
Fungal infections are a leading cause of morbidity and death for hospitalized patients, mainly because they remain difficult to diagnose and to treat. Diseases range from widespread superficial infections such as vulvovaginal infections to life-threatening systemic candidiasis. For systemic mycoses, only a restricted arsenal of antifungal agents is available. Commonly used classes of antifungal compounds include azoles, polyenes, and echinocandins. Due to emerging resistance to standard therapies, significant side effects, and high costs for several antifungals, there is a need for new antifungals in the clinic. In order to expand the arsenal of compounds with antifungal activity, we previously screened a compound library using a cell-based screening assay. A set of novel benzimidazole derivatives, including (S)-2-(1-aminoisobutyl)-1-(3-chlorobenzyl)benzimidazole (EMC120B12), showed high antifungal activity against several species of pathogenic yeasts, including Candida glabrata and Candida krusei (species that are highly resistant to antifungals). In this study, comparative analysis of EMC120B12 versus fluconazole and nocodazole, using transcriptional profiling and sterol analysis, strongly suggested that EMC120B12 targets Erg11p in the ergosterol biosynthesis pathway and not microtubules, like other benzimidazoles. In addition to the marker sterol 14-methylergosta-8,24(28)-dien-3,6␣-diol, indicating Erg11p inhibition, related sterols that were hitherto unknown accumulated in the cells during EMC120B12 treatment. The novel sterols have a 3,6␣-diol structure. In addition to the identification of novel sterols, this is the first time that a benzimidazole structure has been shown to result in a block of the ergosterol pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.