Mutations in the fibrillin-1 (FBN1) gene cause Marfan syndrome (MFS) and have been associated with a wide range of overlapping phenotypes. Clinical care is complicated by variable age at onset and the wide range of severity of aortic features. The factors that modulate phenotypical severity, both among and within families, remain to be determined. The availability of international FBN1 mutation Universal Mutation Database (UMD-FBN1) has allowed us to perform the largest collaborative study ever reported, to investigate the correlation between the FBN1 genotype and the nature and severity of the clinical phenotype. A range of qualitative and quantitative clinical parameters (skeletal, cardiovascular, ophthalmologic, skin, pulmonary, and dural) was compared for different classes of mutation (types and locations) in 1,013 probands with a pathogenic FBN1 mutation. A higher probability of ectopia lentis was found for patients with a missense mutation substituting or producing a cysteine, when compared with other missense mutations. Patients with an FBN1 premature termination codon had a more severe skeletal and skin phenotype than did patients with an inframe mutation. Mutations in exons 24-32 were associated with a more severe and complete phenotype, including younger age at diagnosis of type I fibrillinopathy and higher probability of developing ectopia lentis, ascending aortic dilatation, aortic surgery, mitral valve abnormalities, scoliosis, and shorter survival; the majority of these results were replicated even when cases of neonatal MFS were excluded. These correlations, found between different mutation types and clinical manifestations, might be explained by different underlying genetic mechanisms (dominant negative versus haploinsufficiency) and by consideration of the two main physiological functions of fibrillin-1 (structural versus mediator of TGF beta signalling). Exon 24-32 mutations define a high-risk group for cardiac manifestations associated with severe prognosis at all ages.
Background:Somatic mutations affecting components of the Ras-MAPK pathway are a common feature of cancer, whereas germline Ras pathway mutations cause developmental disorders including Noonan, Costello, and cardio-facio-cutaneous syndromes. These ‘RASopathies' also represent cancer-prone syndromes, but the quantitative cancer risks remain unknown.Methods:We investigated the occurrence of childhood cancer including benign and malignant tumours of the central nervous system in a group of 735 individuals with germline mutations in Ras signalling pathway genes by matching their information with the German Childhood Cancer Registry.Results:We observed 12 cases of cancer in the entire RASopathy cohort vs 1.12 expected (based on German population-based incidence rates). This corresponds to a 10.5-fold increased risk of all childhood cancers combined (standardised incidence ratio (SIR)=10.5, 95% confidence interval=5.4–18.3). The specific cancers included juvenile myelomonocytic leukaemia=4; brain tumour=3; acute lymphoblastic leukaemia=2; rhabdomyosarcoma=2; and neuroblastoma=1. The childhood cancer SIR in Noonan syndrome patients was 8.1, whereas that for Costello syndrome patients was 42.4.Conclusions:These data comprise the first quantitative evidence documenting that the germline mutations in Ras signalling pathway genes are associated with increased risks of both childhood leukaemia and solid tumours.
From a large series of 1009 probands with pathogenic FBN1 mutations, data for 320 patients <18 years of age at the last follow-up evaluation were analyzed (32%). At the time of diagnosis, the median age was 6.5 years. At the last examination, the population was classified as follows: neonatal Marfan syndrome, 14%; severe Marfan syndrome, 19%; classic Marfan syndrome, 32%; probable Marfan syndrome, 35%. Seventy-one percent had ascending aortic dilation, 55% ectopia lentis, and 28% major skeletal system involvement. Even when aortic complications existed in childhood, the rates of aortic surgery and aortic dissection remained low (5% and 1%, respectively). Some diagnostic features (major skeletal system involvement, striae, dural ectasia, and family history) were more frequent in the 10- to <18-year age group, whereas others (ascending aortic dilation and mitral abnormalities) were more frequent in the population with neonatal Marfan syndrome. Only 56% of children could be classified as having Marfan syndrome, according to international criteria, at their last follow-up evaluation when the presence of a FBN1 mutation was not considered as a major feature, with increasing frequency in the older age groups. Eighty-five percent of child probands fulfilled international criteria after molecular studies, which indicates that the discovery of a FBN1 mutation can be a valuable diagnostic aid in uncertain cases. The distributions of mutation types and locations in this pediatric series revealed large proportions of probands carrying mutations located in exons 24 to 32 (33%) and in-frame mutations (75%). Apart from lethal neonatal Marfan syndrome, we confirm that the majority of clinical manifestations of Marfan syndrome increase with age, which emphasizes the poor applicability of the international criteria to this diagnosis in childhood and the need for follow-up monitoring in cases of clinical suspicion of Marfan syndrome.
The CV risk remains important in patients with an FBN1 gene mutation and is present throughout life, justifying regular aortic monitoring. Aortic dilatation or dissection should always trigger suspicion of a genetic background leading to thorough examination for extra-aortic features and comprehensive pedigree investigation.
Tuberous sclerosis is an autosomal dominant human disorder caused by inactivating mutations to either the TSC1 or TSC2 tumour suppressor gene. Hamartin and tuberin, the TSC1 and TSC2 gene products, interact and the tuberin -hamartin complex inhibits cell growth by antagonising signal transduction to downstream effectors of the mammalian target of rapamycin (mTOR) through the small GTPase rheb. Previously, we showed that pathogenic tuberin amino-acid substitutions disrupt the tuberin -hamartin complex. Here, we investigate how these mutations affect the role of tuberin in the control of signal transduction through mTOR. Our data indicate that specific amino-acid substitutions have distinct effects on tuberin function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.