Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterised by the development of hamartomas in multiple organs and tissues. TSC is caused by mutations in either the TSC1 or TSC2 gene. We searched for mutations in both genes in a cohort of 490 patients diagnosed with or suspected of having TSC using a combination of denaturing gradient gel electrophoresis, single-strand conformational polymorphism, direct sequencing, fluorescent in situ hybridisation and Southern blotting. We identified pathogenic mutations in 362 patients, a mutation detection rate of 74%. Of these 362 patients, 276 had a definite clinical diagnosis of TSC and in these patients 235 mutations were identified, a mutation detection rate of 85%. The ratio of TSC2:TSC1 mutations was 3.4:1. In our cohort, both TSC1 mutations and mutations in familial TSC2 cases were associated with phenotypes less severe than de novo TSC2 mutations. Interestingly, consistent with other studies, the phenotypes of the patients in which no mutation was identified were, overall, less severe than those of patients with either a known TSC1 or TSC2 mutation.
Tuberous sclerosis is an autosomal dominant human disorder caused by inactivating mutations to either the TSC1 or TSC2 tumour suppressor gene. Hamartin and tuberin, the TSC1 and TSC2 gene products, interact and the tuberin -hamartin complex inhibits cell growth by antagonising signal transduction to downstream effectors of the mammalian target of rapamycin (mTOR) through the small GTPase rheb. Previously, we showed that pathogenic tuberin amino-acid substitutions disrupt the tuberin -hamartin complex. Here, we investigate how these mutations affect the role of tuberin in the control of signal transduction through mTOR. Our data indicate that specific amino-acid substitutions have distinct effects on tuberin function.
Codon 905 missense mutations in TSC2 are relatively common. The TSC2 R905Q mutation is associated with unusually mild disease, consistent with functional studies. Combined with previous reports, it is apparent that certain TSC2 missense mutations are associated with a mild form of tuberous sclerosis, which in many patients does not meet standard diagnostic criteria. These findings have implications for the large number of patients with limited clinical features of TSC and for genetic counseling in these families.
Limb-girdle muscular dystrophies constitute a broad range of clinical and genetic entities. We have evaluated 38 autosomal recessive limb-girdle muscular dystrophy (LGMD2) families by linkage analysis for the known loci of LGMD2A-F and protein studies using immunofluorescence and western blotting of the sarcoglycan complex. One index case in each family was investigated thoroughly. The age of onset and the current ages were between 1 1 ⁄2 and 15 years and 6 and 36 years, respectively. The classification of families was as follows: calpainopathy 7, dysferlinopathy 3, sarcoglycan deficiency 2, sarcoglycan deficiency 7, sarcoglycan deficiency 5, sarcoglycan deficiency 1, and merosinopathy 2. There were two families showing an Emery-Dreifuss phenotype and nine showing no linkage to the LGMD2A-F loci, and they had preserved sarcoglycans.sarcoglycan deficiency seems to be the most severe group as a whole, whereas dysferlinopathy is the mildest. Interfamilial variation was not uncommon. Cardiomyopathy was not present in any of the families. In sarcoglycan deficiencies, sarcoglycans other than the primary ones may also be considerably reduced; however, this may not be reflected in the phenotype. Many cases of primary sarcoglycan deficiency showed normal or only mildly abnormal sarcoglycan staining.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.