CDK9 is a member of the CDC2-like family of kinases. Its cyclin partners are members of the CYCLIN T family (T1, T2a, and T2b) and CYCLIN K. The CDK9/CYCLIN T1 complex is very important in the differentiation programme of several cell types, controlling specific differentiation pathways. Limited data are available regarding the expression of CDK9/CYCLIN T1 in haematopoietic and lymphoid tissues. The aim of this study was to analyse the expression of the CDK9/CYCLIN T1 complex in lymphoid tissue, in order to assess its role in B- and T-cell differentiation and lymphomagenesis. CDK9/CYCLIN T1 expression was found by immunohistochemistry in precursor B and T cells. In peripheral lymphoid tissues, germinal centre cells and scattered B- and T-cell blasts in interfollicular areas expressed CDK9/CYCLIN T1, while mantle cells, plasma cells, and small resting T-lymphocytes displayed no expression of either molecule. CDK9/CYCLIN T1 expression therefore appears to be related to particular stages of lymphoid differentiation/activation. CDK9 and CYCLIN T1 were highly expressed in lymphomas derived from precursor B and T cells, from germinal centre cells, such as follicular lymphomas, and from activated T cells (ie anaplastic large cell lymphomas). Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma also showed strong nuclear staining. Diffuse large B-cell, Burkitt's lymphomas, and peripheral T-cell lymphomas, among T-cell lymphoproliferative disorders, showed a wide range of values. No expression of CDK9 or CYCLIN T1 was detected in mantle cell and marginal zone lymphomas. However, at the mRNA level, an imbalance in the CDK9/CYCLIN T1 ratio was found in follicular lymphoma and diffuse large B-cell lymphomas with germinal centre phenotype, and in the cell lines of classical Hodgkin's lymphomas, Burkitt's lymphomas, and anaplastic large cell lymphoma, in comparison with reactive lymph nodes. These results suggest that the CDK9/CYCLIN T1 complex may affect the activation and differentiation programme of lymphoid cells. The molecular mechanism through which the CDK9/CYCLIN T1 complex is altered in malignant transformation needs to be elucidated.
Endemic, sporadic and HIV-associated Burkitt lymphoma (BL) all have a B-cell phenotype and a MYC translocation, but a variable association with the Epstein-Barr virus (EBV). However, there is still no satisfactory explanation of how EBV participates in the pathogenesis of BL. A recent investigation suggested that EBV-positive and EBV-negative BL have different cells of origin. In particular, according to immunoglobulin gene mutation analysis, EBV-negative BLs may originate from early centroblasts, whereas EBV-positive BLs seem to arise from postgerminal center B cells or memory B cells. The appearance of a germinal center phenotype in EBV-positive cells might thus derive from a block in B-cell differentiation. The exit from the germinal center involves a complex series of events, which require the activation of BLIMP-1, and the consequent downregulation of several target genes. Here, we investigated the expression of specific miRNAs predicted to be involved in B-cell differentiation and found that hsa-miR-127 is differentially expressed between EBV-positive and EBV-negative BLs. In particular, it was strongly upregulated only in EBV-positive BL samples, whereas EBV-negative cases showed levels of expression similar to normal controls, including microdissected germinal centers (GC) cells. In addition, we found evidence that hsa-miR-127 is involved in B-cell differentiation process through posttranscriptional regulation of BLIMP1 and XBP1. The overexpression of this miRNA may thus represent a key event in the lymphomagenesis of EBV positive BL, by blocking the B-cell differentiation process.Burkitt lymphoma (BL) is a highly aggressive B-cell lymphoma that occurs in 3 clinical variants: endemic, sporadic and immunodeficiency-associated. These subtypes differ mainly in their clinical presentation, geographic distribution and EBV infection status. 1 One of the paradoxes in trying to determine the etiopathogenesis of BL is the occurrence of this tumor in many different populations and settings. As endemic, sporadic and HIV-associated BL all have a similar B-cell phenotype and MYC translocation, but a variable association with EBV, it may be argued that these tumors have different pathogenetic mechanisms. However, there is still no satisfactory explanation of how EBV participates in the pathogenesis of BL. A recent investigation suggested that EBV-positive and EBVnegative BL have different cells of origin. In particular, BL cells from patients with EBV-negative tumors (mostly sporadic BL) had lower numbers of immunoglobulin heavy chain somatic mutations and lacked ongoing mutations and signs of antigen selection, compared with BL cells from patients with EBV-positive tumors (mostly endemic and AIDS-related BL). 2 These data suggest that EBV-negative tumors derive from early centroblasts, whereas EBV-positive cases derive from postgerminal center B cells or memory B cells. However, this latest finding is in contrast with the germinal center phenotype and gene expression profile shared by all of the BL variants. 3 This d...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.