We employ quench dynamics as an effective tool to probe different universality classes of topological phase transitions. Specifically, we study a model encompassing both Dirac-like and nodal loop criticalities. Examining the Kibble-Zurek scaling of topological defect density, we discover that the scaling exponent is reduced in the presence of extended nodal loop gap closures. For a quench through a multicritical point, we also unveil a path-dependent crossover between two sets of critical exponents. Bloch state tomography finally reveals additional differences in the defect trajectories for sudden quenches. While the Dirac transition permits a static trajectory under specific initial conditions, we find that the underlying nodal loop leads to complex time-dependent trajectories in general. In the presence of a nodal loop, we find, generically, a mismatch between the momentum modes where topological defects are generated and where dynamical quantum phase transitions occur. We also find notable exceptions where this correspondence breaks down completely.
Nonhermiticity in quantum Hamiltonians leads to non-unitary time evolution and possibly complex energy eigenvalues, which can lead to a rich phenomenology with no Hermitian counterpart. In this work, we study the dynamics of an exactly solvable non-Hermitian system, hosting both PT -symmetric and PT -broken modes subject to a linear quench. Employing a fully consistent framework, in which the Hilbert space is endowed with a nontrivial dynamical metric, we analyze the dynamics of the generated defects. In contrast to Hermitian systems, our study reveals that PT -broken time evolution leads to defect freezing and hence the violation of quantum adiabaticity. Additionally, no Kibble-Zurek scaling regime in the quasi-adiabatic limit exists in our model. This physics necessitates the quantum metric framework, as it is missed by the oft used approach of normalizing quantities by the time-dependent norm of the state. Our results are relevant for a wide class of experimental systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.