Nickel sulfide thin films and nanocrystals stabilized with oleylamine ligands are prepared from two different nickel xanthates as single-source precursors, which decompose at approx. 180°C, and are thereby converted into nickel sulfide. These nickel xanthates comprise branched alkyl moieties allowing the choice of a wide range of nonpolar organic solvents for the processing to nickel sulfide thin films as well as to nanoparticles. The crystal structures of both compounds show a typical square-planar coordination of the sulfur atoms of both xanthates to the nickel central atom. The thermal decomposition via the Chugaev reaction forming nickel sulfide was studied by thermal gravimetric analysis showing the reaction taking place at about 180°C. Consequently, by thermally converting spin-coated metal xanthate films directly on the substrates in the solid state, thin films consisting of hexagonal nickel sulfide are formed. If the nickel xanthates are heated in an oleylamine solution, oleylaminecapped nickel sulfide nanocrystals are obtained, exhibiting hexagonal NiS as main phase and Ni 3 S 4 as secondary phase. This is also reflected in a sulfur-rich composition of the synthesized nickel sulfide nanocrystals as observed from TEM-EDX analyses.
Copper indium sulfide nanocrystals with sizes of 3–4 nm were synthesized from metal xanthates in a hot injection reaction. After ligand exchange, their performance as acceptors in polymer/nanocrystal hybrid solar cells was evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.