The immediate early gene Arc is emerging as a versatile, finely tuned system capable of coupling changes in neuronal activity patterns to synaptic plasticity, thereby optimizing information storage in the nervous system. Here, we attempt to overview the Arc system spanning from transcriptional regulation of the Arc gene, to dendritic transport, metabolism, and translation of Arc mRNA, to post-translational modification, localization, and degradation of Arc protein. Within this framework we discuss the function of Arc in regulation of actin cytoskeletal dynamics underlying consolidation of long-term potentiation (LTP) and regulation of AMPA-type glutamate receptor endocytosis underlying long-term depression (LTD) and homeostatic plasticity. Behaviorally, Arc has a key role in consolidation of explicit and implicit forms of memory, with recent work implicating Arc in adaptation to stress as well as maladaptive plasticity connected to drug addiction. Arc holds considerable promise as a “master regulator” of protein synthesis-dependent forms of synaptic plasticity, but the mechanisms that modulate and switch Arc function are only beginning to be elucidated.
BDNF signaling contributes to protein-synthesis-dependent synaptic plasticity, but the dynamics of TrkB signaling and mechanisms of translation have not been defined. Here, we show that long-term potentiation (LTP) consolidation in the dentate gyrus of live rodents requires sustained (hours) BDNF-TrkB signaling. Surprisingly, this sustained activation maintains an otherwise labile signaling pathway from TrkB to MAP-kinase-interacting kinase (MNK). MNK activity promotes eIF4F translation initiation complex formation and protein synthesis in mechanistically distinct early and late stages. In early-stage translation, MNK triggers release of the CYFIP1/FMRP repressor complex from the 5'-mRNA cap. In late-stage translation, MNK regulates the canonical translational repressor 4E-BP2 in a synapse-compartment-specific manner. This late stage is coupled to MNK-dependent enhanced dendritic mRNA translation. We conclude that LTP consolidation in the dentate gyrus is mediated by sustained BDNF signaling to MNK and MNK-dependent regulation of translation in two functionally and mechanistically distinct stages.
Regulation of microRNA (miRNA) expression and function in the context of activity-dependent synaptic plasticity in the adult brain is little understood. Here, we examined miRNA expression during long-term potentiation (LTP) in the dentate gyrus of adult anesthetized rats. Microarray expression profiling identified a subpopulation of regulated mature miRNAs 2 h after the induction of LTP by high-frequency stimulation (HFS) of the medial perforant pathway. Real-time polymerase chain reaction analysis confirmed modest upregulation of miR-132 and miR-212, and downregulation of miR-219, while no changes occurred at 10 min post-HFS. Surprisingly, pharmacological blockade of N-methyl-d-aspartate receptor (NMDAR)-dependent LTP enhanced expression of these mature miRNAs. This HFS-evoked expression was abolished by local infusion of the group 1 metabotropic glutamate receptor (mGluR) antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). AIDA had no effect on LTP induction or maintenance, but blocked activity-dependent depotentiation of LTP. Turning to the analysis of miRNA precursors, we show that HFS elicits 50-fold elevations of primary (pri) and precursor (pre) miR-132/212 that is transcription dependent and mGluR dependent, but insensitive to NMDAR blockade. Primary miR-219 expression was unchanged during LTP. In situ hybridization showed upregulation of the pri-miR-132/212 cluster restricted to dentate granule cell somata. Thus, HFS induces transcription miR-132/212 that is mGluR dependent and functionally correlated with depotentiation rather than LTP. In contrast, NMDAR activation selectively downregulates mature miR-132, -212 and -219 levels, indicating accelerated decay of these mature miRNAs. This study demonstrates differential regulation of primary and mature miRNA expression by mGluR and NMDAR signaling following LTP induction, the function of which remains to be defined.
Brain-derived neurotrophic factor (BDNF) is a critical regulator of transcription-dependent adaptive neuronal responses, such as long-term potentiation (LTP). Brief infusion of BDNF into the dentate gyrus of adult anesthetized rats triggers stable LTP at medial perforant path-granule synapses that is transcription-dependent and requires induction of the immediate early gene Arc. Rather than acting alone, Arc is likely to be part of a larger BDNF-induced transcriptional program. Here, we used cDNA microarray expression profiling to search for genes co-upregulated with Arc 3 h after BDNF-LTP induction. Of nine cDNAs encoding for known genes and up-regulated more than four-fold, we selected five genes, Narp, neuritin, ADP-ribosylation factor-like protein-4 (ARL4L), TGF-beta-induced immediate early gene-1 (TIEG1) and CARP, for further validation. Real-time PCR confirmed robust up-regulation of these genes in an independent set of BDNF-LTP experiments, whereas infusion of the control protein cytochrome C had no effect. In situ hybridization histochemistry further revealed up-regulation of all five genes in somata of post-synaptic granule cells following both BDNF-LTP and high-frequency stimulation-induced LTP. While Arc synthesis is critical for local actin polymerization and stable LTP formation, several of the co-upregulated genes have known functions in excitatory synaptogenesis, axon guidance and glutamate receptor clustering. These results provide novel insight into gene expression responses underlying BDNF-induced synaptic consolidation in the adult brain in vivo.
Regulation of translation factor activity plays a major role in protein synthesis-dependent forms of synaptic plasticity. We examined translational control across the critical period of Arc synthesis underlying consolidation of long term potentiation (LTP) in the dentate gyrus of intact, anesthetized rats. LTP induction by high frequency stimulation (HFS) evoked phosphorylation of the cap-binding protein eukaryotic initiation factor 4E (eIF4E) and dephosphorylation of eIF2␣ on a protracted time course matching the time-window of Arc translation. Local infusion of the ERK inhibitor U0126 inhibited LTP maintenance and Arc protein expression, blocked changes in eIF4E and eIF2␣ phosphorylation state, and prevented initiation complex (eIF4F) formation. Surprisingly, inhibition of the mTOR protein complex 1 (mTORC1) with rapamycin did not impair LTP maintenance or Arc synthesis nor did it inhibit eIF4F formation or phosphorylation of eIF4E. Rapamycin nonetheless blocked mTOR signaling to p70 S6 kinase and ribosomal protein S6 and inhibited synthesis of components of the translational machinery. Using immunohistochemistry and in situ hybridization, we show that Arc protein expression depends on dual, ERK-dependent transcription and translation. Arc translation is selectively blocked by pharmacological inhibition of mitogen-activated protein kinase-interacting kinase (MNK), the kinase coupling ERK to eIF4E phosphorylation. Furthermore, MNK signaling was required for eIF4F formation. These results support a dominant role for ERK-MNK signaling in control of translational initiation and Arc synthesis during LTP consolidation in the dentate gyrus. In contrast, mTORC1 signaling is activated but nonessential for Arc synthesis and LTP. The work, thus, identifies translational control mechanisms uniquely tuned to Arc-dependent LTP consolidation in live rats.The adult mammalian brain is known to express diverse forms of activity-dependent synaptic plasticity (1, 2). Bursts of synaptic activity can induce short term changes in synaptic strength, but more stable modifications typically require modulation of gene expression at the transcriptional and post-transcriptional levels (3, 4). Through post-transcriptional regulation, synaptic activity may dictate the time and place of neuronal protein synthesis.Regulated phosphorylation of translation factors and other ribosome-associated proteins is a major mechanism for controlling the activity of the translational machinery (5, 6). Translation control studies of LTP 2 have concentrated mainly on the Schaffer-collateral input to hippocampal CA1 pyramidal cells. Studies employing knock-out mice and pharmacological inhibitors support a role for eukaryotic initiation factor 4E (eIF4E) and eIF2␣ in consolidation of LTP in the CA1 region and long term memory (7-10). The function of the cap-binding protein eIF4E during translational initiation is controlled by eIF4E-binding proteins (4E-BPs), which inhibit initiation complex (eIF4F) formation by competing with the scaffolding protein eIF4G for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.