Abstract. Atmospheric measurements of the ozone-depleting substance CFC-113a (CCl3CF3) are reported from ground-based stations in Australia, Taiwan, Malaysia and the United Kingdom, together with aircraft-based data for the upper troposphere and lower stratosphere. Building on previous work, we find that, since the gas first appeared in the atmosphere in the 1960s, global CFC-113a mixing ratios have been increasing monotonically to the present day. Mixing ratios of CFC-113a have increased by 40 % from 0.50 to 0.70 ppt in the Southern Hemisphere between the end of the previously published record in December 2012 and February 2017. We derive updated global emissions of 1.7 Gg yr−1 on average between 2012 and 2016 using a two-dimensional model. We compare the long-term trends and emissions of CFC-113a to those of its structural isomer, CFC-113 (CClF2CCl2F), which still has much higher mixing ratios than CFC-113a, despite its mixing ratios and emissions decreasing since the 1990s. The continued presence of northern hemispheric emissions of CFC-113a is confirmed by our measurements of a persistent interhemispheric gradient in its mixing ratios, with higher mixing ratios in the Northern Hemisphere. The sources of CFC-113a are still unclear, but we present evidence that indicates large emissions in East Asia, most likely due to its use as a chemical involved in the production of hydrofluorocarbons. Our aircraft data confirm the interhemispheric gradient as well as showing mixing ratios consistent with ground-based observations and the relatively long atmospheric lifetime of CFC-113a. CFC-113a is the only known CFC for which abundances are still increasing substantially in the atmosphere.
The Asian summer monsoon anticyclone (ASMA) occurs during the boreal summer (July, August, and September) over East and South Asia. It is a major meteorological system characterized by deep convection and anticyclonic flow in the upper troposphere and lower stratosphere (UTLS) and is subject to strong
Recent findings of an unexpected slowdown in the decline of CFC-11 mixing ratios in the atmosphere have led to the conclusion that global CFC-11 emissions have increased over the past decade and have been attributed in part to eastern China. This study independently assesses these findings by evaluating enhancements of CFC-11 mixing ratios in air samples collected in Taiwan between 2014 and 2018. Using the NAME (Numerical Atmospheric Modeling Environment) particle dispersion model, we find the likely source of the enhanced CFC-11 observed in Taiwan to be East China. Other halogenated trace gases were also measured, and there were positive interspecies correlations between CFC-11 and CHCl 3 , CCl 4 , HCFC-141b, HCFC-142b, CH 2 Cl 2 , and HCFC-22, indicating co-location of the emissions of these compounds. These correlations in combination with published emission estimates of CH 2 Cl 2 and HCFC-22 from China, and of CHCl 3 and CCl 4 from eastern China, are used to estimate CFC-11 emissions. Within the uncertainties, these estimates do not differ for eastern China and the whole of China, so we combine them to derive a mean estimate that we term as being from "(eastern) China". For 2014−2018, we estimate an emission of 19 ± 5 Gg year −1 (gigagrams per year) of CFC-11 from (eastern) China, approximately one-quarter of global emissions. Comparing this to previously reported CFC-11 emissions estimated for earlier years, we estimate CFC-11 emissions from (eastern) China to have increased by 7 ± 5 Gg year −1 from the 2008−2011 average to the 2014−2018 average, which is 50 ± 40% of the estimated increase in global CFC-11 emissions and is consistent with the emission increases attributed to this region in an earlier study.
Abstract. We present new observations of trace gases in the stratosphere based on a cost-effective sampling technique that can access much higher altitudes than aircraft. The further development of this method now provides detection of species with abundances in the parts per trillion (ppt) range and below. We obtain mixing ratios for six gases (CFC-11, CFC-12, HCFC-22, H-1211, H-1301, and SF6), all of which are important for understanding stratospheric ozone depletion and circulation. After demonstrating the quality of the data through comparisons with ground-based records and aircraft-based observations, we combine them with the latter to demonstrate its potential. We first compare the data with results from a global model driven by three widely used meteorological reanalyses. Secondly, we focus on CFC-11 as recent evidence has indicated renewed atmospheric emissions of that species relevant on a global scale. Because the stratosphere represents the main sink region for CFC-11, potential changes in stratospheric circulation and troposphere–stratosphere exchange fluxes have been identified as the largest source of uncertainty for the accurate quantification of such emissions. Our observations span over a decade (up until 2018) and therefore cover the period of the slowdown of CFC-11 global mixing ratio decreases measured at the Earth's surface. The spatial and temporal coverage of the observations is insufficient for a global quantitative analysis, but we do find some trends that are in contrast with expectations, indicating that the stratosphere may have contributed to the slower concentration decline in recent years. Further investigating the reanalysis-driven model data, we find that the dynamical changes in the stratosphere required to explain the apparent change in tropospheric CFC-11 emissions after 2013 are possible but with a very high uncertainty range. This is partly caused by the high variability of mass flux from the stratosphere to the troposphere, especially at timescales of a few years, and partly by large differences between runs driven by different reanalysis products, none of which agree with our observations well enough for such a quantitative analysis.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.