Fur seal populations in the Southern Hemisphere were plundered in the late 1700s and early 1800s to provide fur for a clothing industry. Millions of seals were killed resulting in potentially major ecosystem changes across the Southern Hemisphere, the consequences of which are unknown today. Following more than a century of population suppression, partly through on-going harvesting, many of the fur seal populations started to recover in the late 1900s. Australian fur seals (Arctocephalus pusillus doriferus), one of the most geographically constrained fur seal species, followed this trend. From the 1940s to 1986, pup production remained at approximately 10,000 per year, then significant growth commenced. By 2007, live pup abundance had recovered to approximately 21,400 per year and recovery was expected to continue However, a species-wide survey in 2013 recorded a 20% decline, to approximately 16,500 live pups. It was not known if this decline was due to 2013 being a poor breeding year or a true population reduction. Here we report the results of a population-wide survey conducted in 2017 and annual monitoring at the most productive colony, Seal Rocks, Victoria that recorded a large decline in live pup abundance (-28%). Sustained lower pup numbers at Seal Rocks from annual counts between 2012–2017 (mean = 2908 ± 372 SD), as well as the population-wide estimate of 16,903 live pups in 2017, suggest that the pup numbers for the total population have remained at the lower level observed in 2013 and that the 5-yearly census results are not anomalies or representative of poor breeding seasons. Potential reasons for the decline, which did not occur range-wide but predominantly in the most populated and long-standing breeding sites, are discussed. To enhance adaptive management of this species, methods for future monitoring of the population are also presented. Australian fur seals occupy several distinct regions influenced by different currents and upwellings: range-wide pup abundance monitoring enables comparisons of ecosystem status across these regions. Forces driving change in Australian fur seal pup numbers are likely to play across other marine ecosystems, particularly in the Southern Hemisphere where most fur seals live.
Streamlined flippers are often considered the defining feature of seals and sea lions, whose very name ‘pinniped’ comes from the Latin pinna and pedis, meaning ‘fin-footed’. Yet not all pinniped limbs are alike. Whereas otariids (fur seals and sea lions) possess stiff streamlined forelimb flippers, phocine seals (northern true seals) have retained a webbed yet mobile paw bearing sharp claws. Here, we show that captive and wild phocines routinely use these claws to secure prey during processing, enabling seals to tear large fish by stretching them between their teeth and forelimbs. ‘Hold and tear’ processing relies on the primitive forelimb anatomy displayed by phocines, which is also found in the early fossil pinniped Enaliarctos. Phocine forelimb anatomy and behaviour therefore provide a glimpse into how the earliest seals likely fed, and indicate what behaviours may have assisted pinnipeds along their journey from terrestrial to aquatic feeding.
Remotely piloted aircraft (RPA or drones) have become a powerful tool for use in spatial and temporal ecology. Major benefits for environmental management, including improved accuracy and precision for population monitoring of fauna, are being realized. We used Australian fur seals (Arctocephalus pusillus) as a model system to assess how counts and capture-mark-resight (CMR) estimates derived from RPA surveys compared with both traditionally used ground counts and CMR abundance estimates at two colonies in southeastern Australia. To manage the large volume of data, we implemented a citizen science portal SealSpotter to screen RPA imagery for animals of the target age classes. Capture-mark-resight estimates and direct counts using RPA imagery provided measurable improvement in monitoring precision when compared with traditional techniques. A key methodological assumption of CMR estimates is that there is uniform mixing of marked animals across the focal area. This was also validated using spatial data derived from images and linear models, a novel capability of the RPA technique. Our findings have the potential to improve wildlife monitoring techniques for fur seals and are broadly transferable to a wide range of other animal taxa where CMR techniques are employed. Furthermore, they add to the growing body of evidence that demonstrates the benefits of RPAs for wildlife monitoring exceed those of traditional techniques.
Remote sensing of anthropogenic light has substantial potential to quantify light pollution levels and understand its impact on a wide range of taxa. Currently, the use of space-borne night-time sensors for measuring the actual light pollution that animals experience is limited. This is because most night-time satellite imagery and space-borne sensors measure the light that is emitted or reflected upwards, rather than horizontally, which is often the light that is primarily perceived by animals. Therefore, there is an important need for developing and testing ground-based remote sensing techniques and methods. In this study, we aimed to address this gap by examining the potential of ground photography to quantify the actual light pollution perceived by animals, using sea turtles as a case study. We conducted detailed ground measurements of night-time brightness around the coast of Heron Island, a coral cay in the southern Great Barrier Reef of Australia, and an important sea turtle rookery, using a calibrated DSLR Canon camera with an 8 mm fish-eye lens. The resulting hemispheric photographs were processed using the newly developed Sky Quality Camera (SQC) software to extract brightness metrics. Furthermore, we quantified the factors determining the spatial and temporal variation in night-time brightness as a function of environmental factors (e.g., moon light, cloud cover, and land cover) and anthropogenic features (e.g., artificial light sources and built-up areas). We found that over 80% of the variation in night-time brightness was explained by the percentage of the moon illuminated, moon altitude, as well as cloud cover. Anthropogenic and geographic factors (e.g., artificial lighting and the percentage of visible sky) were especially important in explaining the remaining variation in measured brightness under moonless conditions. Night-time brightness variables, land cover, and rock presence together explained over 60% of the variation in sea turtle nest locations along the coastline of Heron Island, with more nests found in areas of lower light pollution. The methods we developed enabled us to overcome the limitations of commonly used ground/space borne remote sensing techniques, which are not well suited for measuring the light pollution to which animals are exposed. The findings of this study demonstrate the applicability of ground-based remote sensing techniques in accurately and efficiently measuring night-time brightness to enhance our understanding of ecological light pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.