Despite being identified in 1938, many aspects of the pathogenesis and epidemiology of fibropapillomatosis (FP) in marine turtles are yet to be fully uncovered. Current knowledge suggests that FP is an emerging infectious disease, with the prevalence varying both spatially and temporally, even between localities in close proximity to each other. A high prevalence of FP in marine turtles has been correlated with residency in areas of reduced water quality, indicating that there is an environmental influence on disease presentation. Chelonid herpesvirus 5 (ChHV5) has been identified as the likely aetiological agent of FP. The current taxonomic position of ChHV5 is in the family Herpesviridae, subfamily Alphaherpesvirinae, genus Scutavirus. Molecular differentiation of strains has revealed that a viral variant is typically present at specific locations, even within sympatric species of marine turtles, indicating that the disease FP originates regionally. There is uncertainty surrounding the exact path of transmission and the conditions that facilitate lesion development, although recent research has identified atypical genes within the genome of ChHV5 that may play a role in pathogenesis. This review discusses emerging areas where researchers might focus and theories behind the emergence of FP globally since the 1980s, which appear to be a multi-factorial interplay between the virus, the host and environmental factors influencing disease expression.
Fibropapillomatosis (FP) is a marine turtle disease recognised by benign tumours on the skin, eyes, shell, oral cavity and/or viscera. Despite being a globally distributed disease that affects an endangered species, research on FP and its likely causative agent chelonid alphaherpesvirus 5 (ChHV5) in Australia is limited. Here we present improved molecular assays developed for detection of ChHV5, in combination with a robust molecular and phylogenetic analysis of ChHV5 variants. This approach utilised a multi-gene assay to detect ChHV5 in all FP tumors sampled from 62 marine turtles found at six foraging grounds along the Great Barrier Reef. Six distinct variants of ChHV5 were identified and the distribution of these variants was associated with host foraging ground. Conversely, no association between host genetic origin and ChHV5 viral variant was found. Together this evidence supports the hypothesis that marine turtles undergo horizontal transmission of ChHV5 at foraging grounds and are unlikely to be contracting the disease at rookeries, either during mating or vertically from parent to offspring.
Sea turtle fibropapillomatosis (FP) is a disease marked by the proliferation of benign but debilitating cutaneous and occasional visceral tumors, likely to be caused by chelonid alphaherpesvirus 5 (ChHV5). This study presents a phylogeny of ChHV5 strains found on the east coast of Queensland, Australia, and a validation for previously unused primers. Two different primer sets (gB-1534 and gB-813) were designed to target a region including part of the UL27 glycoprotein B (gB) gene and part of UL28 of ChHV5. Sequences obtained from FP tumors found on juvenile green turtles Chelonia mydas (<65 cm curved carapace length) had substantial homology with published ChHV5 sequences, while a skin biopsy from a turtle without FP failed to react in the PCRs used in this study. The resulting sequences were used to generate a neighbor-joining tree from which three clusters of ChHV5 from Australian waters were identified: north Australian, north Queensland, and Queensland clusters. The clusters reflect the collection sites on the east coast of Queensland with a definitive north-south trend. Received October 22, 2016; accepted May 7, 2017.
Background: The transition from pre-clinical to clinical medical training is often characterised by several challenges which may have different impacts on students' well-being and learning experiences. To ensure smooth transition, it's important to understand how these students navigate through the challenging processes. Methods: This study employed a mixed-methods design using a survey, focus groups and interviews among medical students who had entered their first clinical year of study (Year 4). Using a 5-point Likert scale, survey participants rated items which related to their transition experience in the areas of professional socialisation; workload; patient contact; knowledge and skills; and learning and education. The qualitative questions explored challenges in transition, coping strategies and recommendations to foster smooth transitioning. The survey data was analysed using descriptive and inferential statistics while thematic analysis was used to establish emerging themes from the qualitative data. The Westerman Transition Framework was utilised in the triangulation of study findings. Results: A total of 141 students participated in the survey while 12 students participated in the focus group discussions and interviews. The quantitative part of the study showed that the students were anxious about the process and considered the workload to be heavy while also identifying gaps in their knowledge. Similarly, the qualitative findings revealed that workload and professional socialisation were identified as disruptive novel elements and the students also reported feelings of inadequacy and incompetence due to perceived knowledge gaps. These shortcomings and challenges were tackled by seeking support from peers and senior medical students as a way of coping with the anxiety and stress. As the students progressed, they admitted and accepted that the transition was a gradual process and an essential learning curve. Conclusion: The process of transitioning from preclinical to clinical years is considered stressful and abrupt with the introduction of disruptive novel elements that create feelings of incompetence and unpreparedness in students. Educators need to consider developing social and developmental strategies that emphasise nurturing and empowering clinical learning environments and facilitate reflective and transformative lifelong learning opportunities for students.
The impact of a range of different threats has resulted in the listing of six out of seven sea turtle species on the IUCN Red List of endangered species. Disease risk analysis (DRA) tools are designed to provide objective, repeatable and documented assessment of the disease risks for a population and measures to reduce these risks through management options. To the best of our knowledge, DRAs have not previously been published for sea turtles, although disease is reported to contribute to sea turtle population decline. Here, a comprehensive list of health hazards is provided for all seven species of sea turtles. The possible risk these hazards pose to the health of sea turtles were assessed and “One Health” aspects of interacting with sea turtles were also investigated. The risk assessment was undertaken in collaboration with more than 30 experts in the field including veterinarians, microbiologists, social scientists, epidemiologists and stakeholders, in the form of two international workshops and one local workshop. The general finding of the DRA was the distinct lack of knowledge regarding a link between the presence of pathogens and diseases manifestation in sea turtles. A higher rate of disease in immunocompromised individuals was repeatedly reported and a possible link between immunosuppression and environmental contaminants as a result of anthropogenic influences was suggested. Society based conservation initiatives and as a result the cultural and social aspect of interacting with sea turtles appeared to need more attention and research. A risk management workshop was carried out to acquire the insights of local policy makers about management options for the risks relevant to Queensland and the options were evaluated considering their feasibility and effectiveness. The sea turtle DRA presented here, is a structured guide for future risk assessments to be used in specific scenarios such as translocation and head-starting programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.