The discrete dipole approximation is used to explore the internal electric fields of plane-wave-illuminated ice particles, and analyse their differential scattering cross sections. The results are displayed for monocrystals and aggregates of size parameters x = 2 and x = 10. We show that the field is relatively uniform for x = 2, but for monocrystals of x = 10 there is a complex internal structure. For a hexagonal plate, this structure is a combination of two components: a "distorted" plane wave, with wavefronts aligned perpendicular to the incident wave close to the centre of the plate, and curved forward near the particle boundary; and a standing wave, internally reflected around the perimeter. The former is due to the transverse component of the field i.e., the component perpendicular to the incident wave, and the latter is due to the component parallel to the incident direction. Focussing of the field towards the forward side of the particle is observed. As the particle complexity is increased due to aggregation, the field becomes smoother and less focussing is seen. For complex aggregates, the individual monomers act independently of one another, suggesting simplified methods of calculating scattering from such particles. The influence of the internal fields on far-field scattering is explored. It is demonstrated that scattering in the forward and backward directions is dominated by the transverse component. The parallel component contributes to sidescattering, with its influence on total scattering decreasing with particle complexity. We propose that this is due to the inability of complex particles to maintain a standing wave, diminishing much of the sidescattering observed for monocrystals. Comparisons of the far-field scattering properties of complex aggregates using the discrete dipole and Rayleigh-Gans approximations are also presented for x = 2 and x = 10, along with results obtained using a soft sphere approximation.
The Discrete Dipole Approximation (DDA) is widely used to simulate scattering of microwaves by snowflakes, by discretising the snowflake into small ‘dipoles’ which oscillate in response to (a) the incident wave, and (b) scattered waves from all the other dipoles in the particle. It is this coupling between all dipole pairs which makes solving the DDA system computationally expensive, and that cost grows nonlinearly as the number of crystals n within an aggregate is increased. Motivated by this, many studies have ignored the dipole coupling (the Rayleigh–Gans Approximation, RGA). However, use of RGA leads to systematic underestimation of both scattering and absorption, and an inability to predict polarimetric properties. To address this, we present a new approach (the Independent Monomer Approximation, IMA) which solves the DDA system for each crystal ‘monomer’ separately, then combines them to construct the full solution. By including intra‐monomer coupling, but neglecting inter‐monomer coupling, we save a factor of n in computation time over DDA. Benchmarking IMA against DDA solutions indicates that its accuracy is greatly superior to RGA, and provides ensemble scattering cross‐sections which closely agree with their more expensive DDA counterparts, particularly at size parameters smaller than ∼ 5 . Addition of rime to the aggregates does not significantly degrade the results, despite the increased density. The use of IMA for radar remote sensing is evaluated, and we show that multi‐wavelength and multi‐polarisation parameters are successfully captured to within a few tenths of a dB for aggregates probed with frequencies between 3 and 200 GHz, in contrast to RGA where errors of up to 2.5 dB are observed. Finally, we explore the realism of the IMA solutions in greater detail by analysing internal electric fields, and discuss some broader insights that IMA provides into the physical features of aggregates that are important for microwave scattering.
Abstract. The first closure study involving passive microwave and submillimetre measurements of ice clouds with the consideration of oriented particles is presented, using a unique combination of polarised observations from the ISMAR spectral-like radiometer, two radars with frequencies of 35 and 95 GHz, and a variety of in-situ instruments. Of particular interest to this study are the large V-H polarised brightness temperature differences measured from ISMAR above a thick frontal ice cloud. Previous studies combining radar and passive submillimetre measurements have not considered polarisation differences. Moreover, they have assumed particle habits a-priori. We aim to test whether the large V-H measurements can be simulated successfully by using an atmospheric model consistent with in-situ microphysics. An atmospheric model is constructed using information from the in-situ measurements, such as the ice water content, the particle size distribution, and the mass and shape of particles, as well as background information obtained from dropsonde profiles. Columnar and dendritic aggregate particle models are generated specifically for this case, and their scattering properties are calculated using the Independent Monomer Approximation under the assumption of horizontal orientation. The scattering properties are used to perform polarised radiative transfer simulations using ARTS to test whether we can successfully simulate the measured large V-H differences. Radar measurements are used to extrapolate the 1D microphysical profile to derive a time-series of particle size distributions which are used to simulate ISMAR brightness temperatures. These simulations are compared to the observations. It is found that particle models that are consistent with in-situ microphysics observations are capable of reproducing the brightness temperature depression and polarisation signature measured from ISMAR at the dual-polarised channel of 243 GHz. However, it was required that a proportion of the particles were changed in order to increase the V-H polarised brightness temperature differences. Thus we incorporated mm-sized dendritic crystals, as these particles were observed in the probe imagery. At the second dual-polarised channel of 664 GHz, the brightness temperature depressions were generally simulated at the correct locations, however the simulated V-H was too large. This work shows that multi-frequency polarisation information could be used to infer realistic particle shapes, orientations, and representations of the split between single crystals and aggregates within the cloud.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.