A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce "coordination-activity plots" that predict the geometric structure of optimal active sites. The method is illustrated on the oxygen reduction reaction catalyzed by platinum. Sites with the same number of first-nearest neighbors as (111) terraces but with an increased number of second-nearest neighbors are predicted to have superior catalytic activity. We used this rationale to create highly active sites on platinum (111), without alloying and using three different affordable experimental methods.
Studies of the structure of supported water clusters provide a means for obtaining a rigorous molecular-scale description of the initial stages of heterogeneous ice nucleation: a process of importance to fields as diverse as atmospheric chemistry, astrophysics and biology. Here, we report the observation and characterization of metal-supported water hexamers and a family of hydrated nanoclusters--heptamers, octamers and nonamers--through a combination of low-temperature scanning tunnelling microscopy experiments and first-principles electronic-structure calculations. Aside from achieving unprecedented resolution of the cyclic water hexamer--the so-called smallest piece of ice--we identify and explain a hitherto unknown competition between the ability of water molecules to simultaneously bond to a substrate and to accept hydrogen bonds. This competition also rationalizes previous structure predictions for water clusters on other substrates.
Two-dimensional supramolecular clusters and chains are observed upon submonolayer deposition of 1-nitronaphthalene (NN) onto reconstructed Au(111). The molecules become pseudochiral upon adsorption. Their handedness is determined from high-resolution scanning tunneling microscope images and local-density calculations. Modeling shows that hydrogen bonds cause the observed self-assembly. Clusters and chains mutually interact via electrostatic repulsion
Single working molecule: The controlled cis–trans isomerization (see picture; left cis, right trans isomer) of a single molecule of the azobenzene derivative Disperse Orange 3 on a Au(111) metal surface is acccomplished by injection of tunneling electrons at a certain position (cross in left picture) into the molecule.
Adsorption of sub-monolayer amounts of 1-nitronaphthalene (NN) onto Au(111) leads to the aggregation of NN decamers, which exhibit two-dimensional chirality and represent a racemic mixture. In analogy to Pasteur's experiment of 1848 a scanning tunneling microscope can be used to discriminate and separate the enantiomers on a molecular scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.