The sorption from water to wood (KWood) of 10 organic chemicals (log KOW, 1.48-6.20) was experimentally determined for oak (Quercus robur) and basket willow (Salix viminalis). Linear regression yielded log KWood = -0.27 (+/- 0.25) + 0.632 (+/- 0.063) log KOW for oak (r = 0.90, n = 27) and log KWood = -0.28 (+/- 0.40) + 0.668 (+/- 0.103) log KOW for willow (r = 0.79, n = 27). According to an equilibrium-partitioning model, wood should be an important storage compartment for lipophilic environmental chemicals, but this is contrary to analytical results. Diffusive uptake from air into wood was estimated to be a relevant transport process only for chemicals with a high KAW. Uptake of chemicals from soil via xylem into stem was simulated with a dynamic one-compartment model. This pathway seems to be important for chemicals with low and intermediate lipophilicity. In large trees, the chemicals are retained for a long time. If metabolism inside the stem occurs, wood can serve as a "safe sink" for environmental chemicals. This might be of use in phytoremediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.