Cryptosporidiosis of calves is caused by the enteroprotozoan Cryptosporidium spp. The disease results in intense diarrhea of calves associated with substantial economic losses in dairy farming worldwide. The aim of this study was to determine calf, herd, and within-herd Cryptosporidium prevalence and identify Cryptosporidium species and subtypes in calves with diarrhea in intensive dairy herds in central Argentina. A total of 1073 fecal samples were collected from 54 randomly selected dairy herds. Cryptosporidium-oocysts were isolated and concentrated from fecal samples using formol-ether and detected by light microscopy with the modified Ziehl-Neelsen technique. Overall prevalence of oocyst-excreting calves was found to be 25.5% (274/ 1073) (95% C.I. 22.9; 28.1%). Of the herds studied, 89% (48/54) included at least one infected calf, whereas within-herd prevalence ranged from the absence of infection to 57% (20/35). A highly significant association was found between the presence of diarrhea and C. parvum infection (χ 2 = 55.89, p < 0.001). For species determination, genomic DNA isolated from oocystpositive fecal samples was subjected to PCR-RFLP of the 18S rRNA gene resulting exclusively in Cryptosporidium parvum identification. C. parvum isolates of calves displaying diarrhea and high rate of excretion of oocysts were subtyped by PCR amplification and direct sequencing of the 60 kDa glycoprotein (GP60) gene. Altogether five GP60 subtypes, designated IIaA18G1R1, IIaA20G1R1, IIaA21G1R1, IIaA22G1R1, and IIaA24G1R1 were identified. Interestingly, IIaA18G1R1 and IIaA20G1R1 were predominant in calves with diarrhea and high infection intensity. Notably, IIaA24G1R1 represents a novel, previously unrecognized C. parvum subtype. The subtype IIaA18G1R1, frequently found in this study, is strongly implicated in zoonotic transmission. These results suggest that calves might be an important source for human cryptosporidiosis in Argentina.
The objectives of this study were to estimate calf and herd prevalence of Cryptosporidium spp. and Giardia spp., the herd prevalence clustering, spatial distribution according to soil type and shedding patterns in dairy calves from Cordoba, Argentina. Six hundred twenty calves younger than 7 weeks of age from 43 dairy herds were sampled. Samples were processed with the formol-ether and modified Ziehl-Neelsen techniques. Univariate analysis and Kruskall-Wallis tests were used. Factors associated were subjected to multivariate analysis with calf shedding intensity as the response variable. Clustering of herd prevalence was assessed by a scan method, and spatial analysis was applied to explore the overlapping of high prevalence herds and soil type. Overall calf prevalence for Cryptosporidium spp. oocysts and Giardia spp. cysts were 19.35% (95% CI: 16.14; 22.54) and 34.50% (95% CI: 30.69; 38.34), respectively. Calves younger than two weeks of age were almost four times more likely to be infected with Cryptosporidium, in comparison to older ones (RR: 3.78, 95% CI: 2.27; 6.26). Giardia spp. shedding showed a similar age pattern (RR: 1.33, 95% CI: 1.02; 1.75). A primary cluster of high Cryptosporidium prevalence was found, and high prevalence herds were located in areas with poor drained soil.
The aim of this study was to perform a current molecular characterization of bovine pathogenic Escherichia coli strains isolated from random samplings in Argentinean dairy farms. Rectal swabs were obtained from 395 (63.7%) healthy and 225 (36.3%) diarrheic calves, belonging to 45 dairy farms in Cordoba Province, Argentina. E. coli isolates were examined for virulence genes (f5, f41, f17, sta, stb, lt, eae, vt) using PCR and the prevalence of E. coli virulence profiles was spatially described in terms of spatial distribution. A total of 30.1% isolates were found to be positive for at least one of the virulence genes. Depending on the different gene combinations present, 11 virulence profiles were found. Most of the isolates analyzed had a single gene, and no combination of fimbrial and enterotoxin gene was predominant. There was no association between the frequency and distribution of E. coli virulence genes and calf health status. Most of the virulence profiles were compatible with ETEC strains and showed a homogeneous distribution over the sampled area. A clustering pattern for E. coli virulence profiles could not be recognized. This work provides updated information on the molecular characterization of pathogenic E. coli strains from dairy herds in Cordoba, Argentina. These findings would be important to formulate prevention programs and effective therapies for diarrhea in calves caused by E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.