Quantifying the dynamics of land use change is critical in tackling global societal challenges such as food security, climate change, and biodiversity loss. Here we analyse the dynamics of global land use change at an unprecedented spatial resolution by combining multiple open data streams (remote sensing, reconstructions and statistics) to create the HIstoric Land Dynamics Assessment + (HILDA +). We estimate that land use change has affected almost a third (32%) of the global land area in just six decades (1960-2019) and, thus, is around four times greater in extent than previously estimated from long-term land change assessments. We also identify geographically diverging land use change processes, with afforestation and cropland abandonment in the Global North and deforestation and agricultural expansion in the South. Here, we show that observed phases of accelerating (~1960–2005) and decelerating (2006–2019) land use change can be explained by the effects of global trade on agricultural production.
Droughts are amongst the most destructive natural disasters in the world. In large regions of Africa, where water is a limiting factor and people strongly rely on rain-fed agriculture, droughts have frequently led to crop failure, food shortages and even humanitarian crises. In eastern and southern Africa, major drought episodes have been linked to El Niño-Southern Oscillation (ENSO) events. In this context and with limited in-situ data available, remote sensing provides valuable opportunities for continent-wide assessment of droughts with high spatial and temporal resolutions. This study aimed to monitor agriculturally relevant droughts over Africa between 2000–2016 with a specific focus on growing seasons using remote sensing-based drought indices. Special attention was paid to the observation of drought dynamics during major ENSO episodes to illuminate the connection between ENSO and droughts in eastern and southern Africa. We utilized Tropical Rainfall Measuring Mission (TRMM)-based Standardized Precipitation Index (SPI) with 0 . 25 ∘ resolution and Moderate-resolution Imaging Spectroradiometer (MODIS)-derived Vegetation Condition Index (VCI) with 500 m resolution as indices for analysing the spatio-temporal patterns of droughts. We combined the drought indices with information on the timing of site-specific growing seasons derived from MODIS-based multi-annual average of Normalized Difference Vegetation Index (NDVI). We proved the applicability of SPI-3 and VCI as indices for a comprehensive continental-scale monitoring of agriculturally relevant droughts. The years 2009 and 2011 could be revealed as major drought years in eastern Africa, whereas southern Africa was affected by severe droughts in 2003 and 2015/2016. Drought episodes occurred over large parts of southern Africa during strong El Niño events. We observed a mixed drought pattern in eastern Africa, where areas with two growing seasons were frequently affected by droughts during La Niña and zones of unimodal rainfall regimes showed droughts during the onset of El Niño. During La Niña 2010/2011, large parts of cropland areas in Somalia (88%), Sudan (64%) and South Sudan (51%) were affected by severe to extreme droughts during the growing seasons. However, no universal El Niño- or La Niña-related response pattern of droughts could be deduced for the observation period of 16 years. In this regard, we discussed multi-year atmospheric fluctuations and characteristics of ENSO variants as further influences on the interconnection between ENSO and droughts. By utilizing remote sensing-based drought indices focussed on agricultural zones and periods, this study attempts to contribute to a better understanding of spatio-temporal patterns of droughts affecting agriculture in Africa, which can be essential for implementing strategies of drought hazard mitigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.