About one third of osteosarcoma patients develop lung metastasis refractory to chemotherapy. Recent studies indicate that biological response modifiers activating the patient's immune system may help controlling minimal residual disease via pathways distinct from those used by cytotoxic drugs, and therefore prove effective against tumor resistance. Muramyl tripeptide phosphatidylethanolamine (MTP-PE) is a synthetic lipophilic glycopeptide capable of activating monocytes and macrophages to a tumoricidal state. When intercalated in multilamellar liposomes (L-MTP-PE) and injected intravenously, it targets lung, liver, and spleen macrophages. Therapeutic activity of L-MTP-PE was demonstrated in several preclinical models of experimental lung metastasis and in clinical trials in dogs with osteosarcoma. Although macrophage activation was shown to be directly involved in the in vivo anti-metastatic activity of this molecule, cytokine and chemokine secretion by activated macrophages could induce recruitment and stimulation of other immune cells, which may in turn indirectly contribute to the anti-tumor effect. L-MTP-PE has undergone clinical development in humans. In early trials, most side effects of L-MTP-PE were minimal. L-MTP-PE showed signs of efficacy in treatment of patients with recurrent osteosarcoma and the encouraging results from phase II studies led to a phase III trial conducted by the Children's Oncology Group in patients with newly diagnosed high-grade osteosarcoma. Patients were treated with or without L-MTP-PE in combination with multi-drug chemotherapy in adjuvant setting; significantly higher overall survival and disease-free survival were observed in the group receiving L-MTP-PE.
To improve cancer immunotherapy, a better understanding of the weak efficiency of tumor-infiltrating T lymphocytes (TIL) is necessary. We have analyzed the functional state of human TIL immediately after resection of three types of tumors (NSCLC, melanoma and RCC). Several signalling pathways (calcium, phosphorylation of ERK and Akt) and cytokine secretion are affected to different extents in TIL, and show a partial spontaneous recovery within a few hours in culture. The global result is an anergy that is quite distinct from clonal anergy induced in vitro, and closer to adaptive tolerance in mice. PD-1 (programmed death -1) is systematically expressed by TIL and may contribute to their anergy by its mere expression, and not only when it interacts with its ligands PD-L1 or PD-L2, which are not expressed by every tumor. Indeed, the TCR-induced calcium and ERK responses were reduced in peripheral blood T cells transfected with PD-1. Inhibition by sodium stibogluconate of the SHP-1 and SHP-2 phosphatases that associate with several inhibitory receptors including PD-1, relieves part of the anergy apparent in TIL or in PD-1-transfected T cells. This work highlights some of the molecular modifications contributing to functional defects of human TIL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.