bToward developing an effective vaccine capable of conferring heterologous protection, the putative lipoprotein LemA, which presents an M3 epitope similar to that of Listeria, was evaluated as a vaccine candidate in the hamster model of leptospirosis. LemA is conserved (>70% pairwise identity) among the pathogenic Leptospira spp., indicating its potential in stimulating a cross-protective immune response. Using different vaccination strategies, including prime-boost, DNA vaccine, and a subunit preparation, recombinant LemA conferred different levels of protection in hamsters. Significant protection against mortality was observed for the prime-boost and the DNA vaccine strategies, which showed 87.5% (P < 0.01) and 62.5% (P < 0.05) efficacy, respectively. Although the subunit vaccine preparation protected 50.0% of immunized hamsters, the level of protection was not significant. None of the hamsters in the control groups survived challenge with a virulent strain of Leptospira interrogans serogroup Icterohaemorrhagiae. Characterization of the immune response found that the strongest antibody response was stimulated by the subunit vaccine preparation, followed by the prime-boost strategy. The DNA vaccine failed to elicit an antibody response in immunized hamsters.
Leptospirosis is a zoonotic disease caused by pathogenic spirochetes of
theLeptospira genus. Vaccination with bacterins has severe
limitations. Here, we evaluated the N-terminal region of the leptospiral
immunoglobulin-like B protein (LigBrep) as a vaccine candidate against leptospirosis
using immunisation strategies based on DNA prime-protein boost, DNA vaccine, and
subunit vaccine. Upon challenge with a virulent strain ofLeptospira
interrogans, the prime-boost and DNA vaccine approaches induced
significant protection in hamsters, as well as a specific IgG antibody response and
sterilising immunity. Although vaccination with recombinant fragment of LigBrep also
produced a strong antibody response, it was not immunoprotective. These results
highlight the potential of LigBrep as a candidate antigen for an effective vaccine
against leptospirosis and emphasise the use of the DNA prime-protein boost as an
important strategy for vaccine development.
Pathogenic Leptospira spp. are the etiological agents of leptospirosis, an important disease of both humans and animals. In urban settings, L. interrogans serovars are the predominant cause of disease in humans. The purpose of this study was to characterize a novel Leptospira isolate recovered from an abandoned swimming pool. Molecular characterization through sequencing of the rpoB gene revealed 100% identity with L. interrogans and variable-number tandem-repeat (VNTR) analysis resulted in a banding pattern identical to L. interrogans serogroup Icterohaemorrhagiae, serovar Copenhageni or Icterohaemorrhagiae. The virulence of the strain was determined in a hamster model of lethal leptospirosis. The lethal dose 50% (LD50) was calculated to be two leptospires in female hamsters and a histopathological examination of infected animals found typical lesions associated with severe leptospirosis, including renal epithelium degeneration, hepatic karyomegaly, liver-plate disarray and lymphocyte infiltration. This highly virulent strain is now available for use in further studies, especially evaluation of vaccine candidates.
BackgroundLeptospirosis, a zoonosis caused by Leptospira spp., is recognized as an emergent infectious disease. Due to the lack of adequate diagnostic tools, vaccines are an attractive intervention strategy. Recombinant proteins produced in Escherichia coli have demonstrated promising results, albeit with variable efficacy. Pichia pastoris is an alternative host with several advantages for the production of recombinant proteins.ResultsThe vaccine candidates LigANI and LipL32 were cloned and expressed in P. pastoris as secreted proteins. Large-scale expression resulted in a yield of 276 mg/L for LigANI and 285 mg/L for LipL32. The recombinant proteins were glycosylated and were recognized by antibodies present in the sera of patients with severe leptospirosis.ConclusionsThe expression of LigANI and LipL32 in P. pastoris resulted in a significant increase in yield compared to expression in E. coli. In addition, the proteins were secreted, allowing for easy purification, and retained the antigenic characteristics of the native proteins, demonstrating their potential application as subunit vaccine candidates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.