Gut epithelial cells contact both commensal and pathogenic bacteria, and proper responses to these bacteria require a balance of positive and negative regulatory signals. In the Drosophila intestine, peptidoglycan-recognition proteins (PGRPs), including PGRP-LE, play central roles in bacterial recognition and activation of immune responses, including induction of the IMD-NF-κB pathway. We show that bacteria recognition is regionalized in the Drosophila gut with various functional regions requiring different PGRPs. Specifically, peptidoglycan recognition by PGRP-LE in the gut induces NF-κB-dependent responses to infectious bacteria but also immune tolerance to microbiota through upregulation of pirk and PGRP-LB, which negatively regulate IMD pathway activation. Loss of PGRP-LE-mediated detection of bacteria in the gut results in systemic immune activation, which can be rescued by overexpressing PGRP-LB in the gut. Together these data indicate that PGRP-LE functions as a master gut bacterial sensor that induces balanced responses to infectious bacteria and tolerance to microbiota.
Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon gene inactivation, these progeny can dedifferentiate and generate malignant tumors. Here, we find that intermediate progenitors are prone to malignancy only when born during an early window of development while expressing the transcription factor Chinmo, and the mRNA-binding proteins Imp/IGF2BP and Lin-28. These genes compose an oncogenic module that is coopted upon dedifferentiation of early-born intermediate progenitors to drive unlimited tumor growth. In late larvae, temporal transcription factor progression in NSCs silences the module, thereby limiting mitotic potential and terminating the window of malignant susceptibility. Thus, this study identifies the gene regulatory network that confers malignant potential to neural tumors with early developmental origins.DOI:
http://dx.doi.org/10.7554/eLife.13463.001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.