Background: Parasite concentration methods facilitate molecular, biochemical and immunological research on the erythrocytic stages of Plasmodium. In this paper, an adaptation of magnetic MACS ® columns for the purification of human Plasmodium species is presented. This method was useful for the concentration/purification of either schizonts or gametocytes.
Oxidative stress is considered as an important factor and an early event in the etiology of Alzheimer's disease (AD). Cu bound to the peptide amyloid-β (Aβ) is found in AD brains, and Cu-Aβ could contribute to this oxidative stress, as it is able to produce in vitro H2O2 and HO˙ in the presence of oxygen and biological reducing agents such as ascorbate. The mechanism of Cu-Aβ-catalyzed H2O2 production is however not known, although it was proposed that H2O2 is directly formed from O2 via a 2-electron process. Here, we implement an electrochemical setup and use the specificity of superoxide dismutase-1 (SOD1) to show, for the first time, that H2O2 production by Cu-Aβ in the presence of ascorbate occurs mainly via a free O2˙(-) intermediate. This finding radically changes the view on the catalytic mechanism of H2O2 production by Cu-Aβ, and opens the possibility that Cu-Aβ-catalyzed O2˙(-) contributes to oxidative stress in AD, and hence may be of interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.