To investigate the effect of overfeeding on the ileal and cecal microbiota of two genotypes of ducks (Pekin and Muscovy), high-throughput 16S rRNA gene-based pyrosequencing was used. The ducks were overfed for 12 days with 58% maize flour and 42% maize grain. Samples were collected before the overfeeding period (at 12 weeks), at 13 weeks, at 14 weeks, and 3 h after feeding. In parallel, ducks fed ad libitum were killed at the same ages. Whatever the digestive segment, the genotype, and the level of intake, Firmicutes and Bacteroidetes are the dominant phyla in the bacterial community of ducks (at least 80%). Before overfeeding, ileal samples were dominated by Bacilli, Clostridia, and Bacteroidia classes (≥ 70%), and cecal samples, by Bacteroidia and Clostridia classes (around 90%) in both Pekin and Muscovy ducks. The richness and diversity decreased in the ileum and increased in the ceca after overfeeding. Overfeeding triggers major changes in the ileum, whereas the ceca are less affected. Overfeeding increased the relative abundance of Clostridiaceae, Lactobacillaceae, Streptococcaceae, and Enterococcaceae families in the ileum, whereas genotype affects particularly three families: Lachnospiraceae, Bacteroidaceae, and Desulfovibrionaceae in the ceca.
The supplementation with Lactobacillus sakei as probiotic on the ileal and cecal microbiota of mule ducks during overfeeding was investigated using high-throughput 16S rRNA gene-based pyrosequencing and real-time PCR. The ducks were overfed with or without L. sakei for 12 d with 56% ground corn and 42% whole corn. Samples were collected before the overfeeding period (at 12 wk), at 13 wk (meal 12 of overfeeding), and at 14 wk (meal 24), 3 h postfeeding. Whatever the digestive segment and the level of intake, Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phyla in the bacterial community of mule ducks (at least 90%). Before overfeeding, ileal samples were dominated by Clostridia, Bacteroidia, and Gammaproteobacteria (80% and up), and cecal samples by Bacteroidia and Clostridia (around 85%). The richness and diversity decreased in the ileum and increased in the ceca after overfeeding. Overfeeding increased the relative abundance of Firmicutes and especially the Lactobacillus group in ileal samples. Nonmetric multidimensional scaling profiles separated the bacterial communities with respect to overfeeding only in cecal samples. Richness indicators decreased after L. sakei has been added at mid-overfeeding only in the ileum. In the ceca, the decrease of these indexes only occurred at the end of overfeeding. The addition of L. sakei triggers major changes in the ileum, whereas the ceca are not affected. Lactobacillus sakei decreased the relative abundance of Bacteroides at mid-overfeeding and the relative abundance of Enterobacteria at the end of overfeeding in the ileum.
Our main objectives were to determine the genes involved in the establishment of hepatic steatosis in three genotypes of palmipeds. To respond to this question, we have compared Muscovy ducks, Pekin ducks and their crossbreed the mule duck fed ad libitum or overfed. We have shown a hepatic overexpression of fatty acid synthase (FAS) and di-acyl glycerol acyl transferase 2 (DGAT2) in overfed individuals, where DGAT2 seemed to be more regulated. This increase in lipogenesis genes is associated with a decrease of lipoprotein formation in Muscovy and mule ducks, especially apolipoprotein B (ApoB) and Microsomal Triglyceride Transfer Protein (MTTP), leading to lipid accumulation in liver. In Pekin ducks, MTTP expression is upregulated suggesting a better hepatic lipids exportation. Regarding lipids re-uptake, fatty acid-binding protein 4 and very-low-density-lipoprotein receptor are overexpressed in liver of mule ducks at the end of the overfeeding period. This phenomenon puts light on a mechanism unknown until today. In fact, mule can incorporate more lipids in liver than the two other genotypes leading to an intensified hepatic steatosis. To conclude, our results confirmed the genotype variability to overfeeding. Furthermore, similar observations are already described in non-alcoholic fatty liver disease in human, and ask if ducks could be an animal model to study hepatic triglyceride accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.