Due to the need for increased security measures for monitoring and safeguarding the activities, video anomaly detection is considered as one of the significant research aspects in the domain of computer vision. Assigning human personnel to continuously check the surveillance videos for finding suspicious activities such as violence, robbery, wrong Uturns, to mention a few, is a laborious and error-prone task. It gives rise to the need for devising automated video surveillance systems ensuring security. Motivated by the same, this paper addresses the problem of detection and localization of anomalies from surveillance videos using pipelined deep autoencoders and one-class learning. Specifically, we used a convolutional autoencoder and a sequence-to-sequence long short-term memory autoencoder in a pipelined fashion for spatial and temporal learning of the videos, respectively. The authors followed the principle of one-class classification for training the model on normal data and testing it on anomalous testing data. The authors achieved a reasonably significant performance in terms of an equal error rate and the time required for anomaly detection and localization comparable to standard benchmarked approaches, thus, qualifies to work in a near-real-time manner for anomaly detection and localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.