Lithium-ion batteries are used as energy sources for energy storage systems, electric vehicles, consumer electronic devices and much more. Prediction of the remaining useful life (RUL) of such sources is vital to improve the safety and reliability of battery-powered systems. Even though several prognostic methods have been extensively explored for the RUL prediction of lithium-ion batteries, these methods are focused on adopting a single empirical / phenomenological degradation model which best describes the degradation behavior. However, certain lithium-ion battery materials exhibit two distinct degradation behaviors with an evident inflection point. In such cases, a single empirical model no longer holds good. Hence, we propose a piecewise degradation model along with a novel methodology to determine the inflection point. The proposed model is incorporated into a particle filter framework to predict the battery's degradation trajectories. The effectiveness of the proposed model is verified by adding a 50dB noise to the measurement data. The prognostic results of the proposed piecewise model are compared with the existing single empirical model. We use prediction error and execution time as the prognostic metrics for comparison.
With smart electronic devices delving deeper into our everyday lives, predictive maintenance solutions are gaining more traction in the electronic manufacturing industry. It is imperative for the manufacturers to identify potential failures and predict the system/device’s remaining useful life (RUL). Although data-driven models are commonly used for prognostic applications, they are limited by the necessity of large training datasets and also the optimization algorithms used in such methods run into local minima problems. In order to overcome these drawbacks, we train a Neural Network with Bayesian inference. In this work, we use Neural Networks (NN) as the prediction model and an adaptive Bayesian learning approach to estimate the RUL of electronic devices. The proposed prognostic approach functions in two stages—weight regularization using adaptive Bayesian learning and prognosis using NN. A Bayesian framework (particle filter algorithm) is adopted in the first stage to estimate the network parameters (weights and bias) using the NN prediction model as the state transition function. However, using a higher number of hidden neurons in the NN prediction model leads to particle weight decay in the Bayesian framework. To overcome the weight decay issues, we propose particle roughening as a weight regularization method in the Bayesian framework wherein a small Gaussian jitter is added to the decaying particles. Additionally, weight regularization was also performed by adopting conventional resampling strategies to evaluate the efficiency and robustness of the proposed approach and to reduce optimization problems commonly encountered in NN models. In the second stage, the estimated distributions of network parameters were fed into the NN prediction model to predict the RUL of the device. The lithium-ion battery capacity degradation data (CALCE/NASA) were used to test the proposed method, and RMSE values and execution time were used as metrics to evaluate the performance.
Composite materials are extensively used in aircraft structures, wherein they are subjected to cyclic loads and subsequently impact-induced damages. Progressive fatigue degradation can lead to catastrophic failure. This highlights the need for an efficient prognostic framework to predict crack propagation in the field of structural health monitoring (SHM) of composite structures to improve functional safety and reliability. However, achieving good accuracy in crack growth prediction is challenging due to uncertainties in the material properties, loading conditions, and environmental factors. This paper presents a particle-filter-based online prognostic framework for damage prognosis of composite laminates due to crack-induced delamination and fiber breakage. An optimized Paris law model is used to describe the damage propagation in glass-fiber-reinforced polymer (GFRP) laminates subject to low-velocity impacts. Our proposed methodology deduces the jump energy/inflection point online wherein the damage growth switches from rapid degradation to slow degradation. The prediction results obtained are compared with the conventional Paris law model to validate the need for an optimized bimodal crack growth propagation model. The root mean square error (RMSE) and remaining useful life (RUL) prediction errors are used as the prognostic metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.