This paper is a review of the stereological problems related to the unbiased estimation of particle number and size when tissue deformation is present. The deformation may occur during the histological processing of the tissue. It is especially noted that the widely used optical disector may be biased by dimensional changes in the z‐axis, i.e. the direction perpendicular to the section plane. This is often the case when frozen sections or vibratome sections are used for the stereological measurements. The present paper introduces new estimators to be used in optical fractionator and optical disector designs; the first is, as usual, the simplest and most robust. Finally, it is stated that when tissue deformation only occurs in the z‐direction, unbiased estimation of particle size with several estimators is possible.
It is unclear to what degree antipsychotic therapy confounds longitudinal imaging studies and post-mortem studies of subjects with schizophrenia. To investigate this problem, we developed a non-human primate model of chronic antipsychotic exposure. Three groups of six macaque monkeys each were exposed to oral haloperidol, olanzapine or sham for a 17-27 month period. The resulting plasma drug levels were comparable to those seen in subjects with schizophrenia treated with these medications. After the exposure, we observed an 8-11% reduction in mean fresh brain weights as well as left cerebrum fresh weights and volumes in both drug-treated groups compared to sham animals. The differences were observed across all major brain regions (frontal, parietal, temporal, occipital, and cerebellum), but appeared most robust in the frontal and parietal regions. Stereological analysis of the parietal region using Cavalieri's principle revealed similar volume reductions in both gray and white matter. In addition, we assessed the subsequent tissue shrinkage due to standard histological processing and found no evidence of differential shrinkage due to drug exposure. However, we observed a pronounced general shrinkage effect of B20% and a highly significant variation in shrinkage across brain regions. In conclusion, chronic exposure of non-human primates to antipsychotics was associated with reduced brain volume. Antipsychotic medication may confound post-mortem studies and longitudinal imaging studies of subjects with schizophrenia that depend upon volumetric measures.
The goal of the present study was to determine whether the architectonic criteria used to identify the core, lateral belt, and parabelt auditory cortices in macaque monkeys (Macaca fascicularis) could be used to identify homologous regions in humans (Homo sapiens). Current evidence indicates that auditory cortex in humans, as in monkeys, is located on the superior temporal gyrus (STG), and is functionally and structurally altered in illnesses such as schizophrenia and Alzheimer's disease. In this study, we used serial sets of adjacent sections processed for Nissl substance, acetylcholinesterase, and parvalbumin to identify the distinguishing cyto- and chemoarchitectonic features of the core, lateral belt, and parabelt in monkey. These criteria were evaluated in postmortem tissue from a human subject, leading to the identification of additional criteria specific to human. The criteria were validated in an additional set of eight human subjects. Regions were delineated and their volumes estimated using the Cavalieri method in these subjects, and the sources of methodologic contribution to variability of the estimates was assessed. Serial reconstructions of the auditory cortex in humans were made showing the location of the lateral belt and parabelt with respect to gross anatomical landmarks. Architectonic criteria for the core, lateral belt, and parabelt were readily adapted from monkey to human. Additionally, we found evidence for an architectonic subdivision within the parabelt, present in both species. Variability of regional volume estimates was readily constrained using a multifaceted approach to reduce potential sources of variability in regional delineation.
These findings suggest that studies investigating glial cell alterations in schizophrenia must take into account the effect of antipsychotic treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.