Siderophores are iron chelators produced by bacteria to access iron, an essential nutriment. Pyoverdine (PVDI), the major siderophore produced by Pseudomonas aeruginosa PAO1, consists of a fluorescent chromophore linked to an octapeptide. The ferric form of PVDI is transported from the extracellular environment into the periplasm by the outer membrane transporter, FpvA. Iron is then released from the siderophore in the periplasm by a mechanism that does not involve chemical modification of the chelator but an iron reduction step. Here, we followed the kinetics of iron release from PVDI, in vitro and in living cells, by monitoring its fluorescence (as apo PVDI is fluorescent, whereas PVDI-Fe(III) is not). Deletion of the inner membrane proteins fpvG (PA2403) and fpvH (PA2404) affected Fe uptake via PVDI and completely abolished PVDI-Fe dissociation, indicating that these two proteins are involved in iron acquisition via this siderophore. PVDI-Fe dissociation studies, using an in vitro assay, showed that iron release from this siderophore requires the presence of an iron reducer (DTT) and an iron chelator (ferrozine). In this assay, DTT could be replaced by the inner membrane protein, FpvG, and ferrozine by the periplasmic protein, FpvC, suggesting that FpvG acts as a reductase and FpvC as an Fe chelator in the process of PVDI-Fe dissociation in the periplasm of P. aeruginosa cells. This mechanism of iron release from PVDI is atypical among Gram-negative bacteria but seems to be conserved among Pseudomonads.
Transport of molecules larger than 600 Da across the outer membrane involves TonB-dependent receptors and TonB-ExbB-ExbD of the inner membrane. The transport is energy consuming, and involves direct interactions between a short N-terminal sequence of receptor, called the TonB box, and TonB. We solved the structure of the ferric pyoverdine (Pvd-Fe) outer membrane receptor FpvA from Pseudomonas aeruginosa in its apo form. Structure analyses show that residues of the TonB box are in a beta strand which interacts through a mixed four-stranded beta sheet with the periplasmic signaling domain involved in interactions with an inner membrane sigma regulator. In this conformation, the TonB box cannot form a four-stranded beta sheet with TonB. The FhuA-TonB or BtuB-TonB structures show that the TonB-FpvA interactions require a conformational change which involves a beta strand lock-exchange mechanism. This mechanism is compatible with movements of the periplasmic domain deduced from crystallographic analyses of FpvA, FpvA-Pvd, and FpvA-Pvd-Fe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.