Prostate-specific antigen (PSA) is highly overexpressed in prostate cancer. One important regulator of PSA expression is the androgen receptor (AR), the nuclear receptor that mediates the biological actions of androgens. AR is able to up-regulate PSA expression by directly binding and activating the promoter of this gene. We provide evidence here that that this AR activity is repressed by the tumor suppressor protein p53. p53 appears to exert its inhibition of human AR (hAR) by disrupting its amino-to carboxyl-terminal (N-to-C) interaction, which is thought to be responsible for the homodimerization of this receptor. Consistent with this, p53 is also able to block hAR DNA binding in vitro. Our previous data have shown that c-Jun can mediate hAR transactivation, and this appears to result from a positive effect on hAR N-to-C interaction and DNA binding. Interestingly, c-Jun is able to relieve the negative effects of p53 on hAR transactivation, N-to-C interaction, and DNA binding, demonstrating antagonistic activities of these two proteins. Importantly, a p53 mutation found in metastatic prostate cancer severely disrupts the p53 negative activity on hAR, suggesting that the inability of p53 mutants to down-regulate hAR is, in part, responsible for the metastatic phenotype.
The transcriptional activity of the human androgen receptor (hAR), like other nuclear receptors, is dependent on accessory factors. One such factor is c-Jun, which has been shown to have a selective function of mediating androgen receptor-dependent transactivation. This c-Jun activity is inhibited by c-Fos, another protooncoprotein that can dimerize with c-Jun to form the transcription factor AP-1. Here we show that c-jun mediates hAR-induced transactivation from the promoter of the androgen-regulated gene, human kallikrein-2 (hKLK2), and c-Fos blocks this activity. Using c-Fos truncation mutants and measuring hKLK2-dependent transcription, we have determined that the bZIP region of c-Fos is required and sufficient for inhibiting c-Jun enhancement of hAR transactivation. Further truncation analysis of the bZIP shows that the c-Fos dimerization function, mediated through the leucine zipper, is essential for the negative activity, whereas DNA binding, mediated through the basic region, is dispensable. These results suggest that heterodimerization by c-Fos with c-Jun blocks c-Jun's ability to enhance hAR-induced transactivation.
Lentivirus envelope glycoproteins have unusually long cytoplasmic domains compared to those of other retroviruses. To identify cellular binding partners of the simian immunodeficiency virus (SIV) envelope transmembrane protein (gp41) cytoplasmic domain (CD), we performed a yeast two-hybrid screen of a phytohemagglutinin-activated human T-cell cDNA library with the SIV gp41 CD. The majority of positive clones (50 of 54) encoded the prenylated Rab acceptor (PRA1). PRA1 is a 21-kDa protein associated with Golgi membranes that binds to prenylated Rab proteins in their GTP-bound state. While the cellular function of PRA1 is presently unknown, this protein appears to participate in intracellular vesicular trafficking, based on its cellular localization and ability to bind multiple members of the Rab protein family. Mammalian two-hybrid assays confirmed the interaction between the SIV gp41 CD and PRA1. Furthermore, gp41 sequences important for PRA1 binding were mapped to a central leucine-rich, amphipathic ␣-helix in the SIV gp41 cytoplasmic tail. Although the human immunodeficiency virus (HIV-1) gp41 CD failed to interact with PRA1 in the yeast two-hybrid system, its interaction with PRA1 was significantly better than that of the SIV gp41 CD in mammalian two-hybrid assays. Interestingly, PRA1 also interacted with the Env CDs of HIV-2, bovine immunodeficiency virus, equine infectious anemia virus, and feline immunodeficiency virus. Thus, PRA1 associates with envelope glycoproteins from widely divergent lentiviruses.Retroviral envelope glycoproteins (Envs) are expressed as polyprotein precursors that are cleaved into surface (SU) and transmembrane (TM) subunits by cellular proteases. Env complexes of SU and TM are anchored in cellular and viral membranes by a membrane-spanning region in TM that divides TM topologically into an internal cytoplasmic domain (CD) and an external fusion domain. A distinguishing feature of lentivirus envelope glycoproteins is the unusual length of their cytoplasmic domain sequences. With the exception of feline immunodeficiency virus (FIV), the Env CDs of all lentiviruses are over 120 amino acids in length, while those of other types of retroviruses typically range between 20 and 40 amino acids (Fig. 1). The retention of unusually long Env CD sequences by lentiviruses suggests that this domain has a function specific to lentivirus replication that is, as yet, poorly understood.The contribution of the human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) TM (gp41) CD to virus replication appears to be species and cell type dependent. In SIV, the gp41 CD is not absolutely required for viral replication. Passage of SIV in human T-cell lines selects for premature stop codons that truncate the gp41 CD within approximately 18 residues of the membrane-spanning region (13,19). However, viruses with these changes rapidly revert to restore the full-length gp41 CD during replication in macaque peripheral blood mononuclear cells (PBMC) or infected animals, indicating that the full-le...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.